BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11837893)

  • 1. Molecular patterning along the sea urchin animal-vegetal axis.
    Brandhorst BP; Klein WH
    Int Rev Cytol; 2002; 213():183-232. PubMed ID: 11837893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.
    Angerer LM; Angerer RC
    Dev Biol; 2000 Feb; 218(1):1-12. PubMed ID: 10644406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
    Angerer LM; Angerer RC
    Curr Top Dev Biol; 2003; 53():159-98. PubMed ID: 12509127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.
    Huang L; Li X; El-Hodiri HM; Dayal S; Wikramanayake AH; Klein WH
    Dev Genes Evol; 2000 Feb; 210(2):73-81. PubMed ID: 10664150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
    Angerer LM; Oleksyn DW; Levine AM; Li X; Klein WH; Angerer RC
    Development; 2001 Nov; 128(22):4393-404. PubMed ID: 11714666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo.
    Gross JM; Peterson RE; Wu SY; McClay DR
    Development; 2003 May; 130(9):1989-99. PubMed ID: 12642501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.