These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11837893)

  • 21. The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development.
    Stamateris RE; Rafiq K; Ettensohn CA
    Gene Expr Patterns; 2010 Jan; 10(1):60-4. PubMed ID: 19853669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos.
    Howard EW; Newman LA; Oleksyn DW; Angerer RC; Angerer LM
    Development; 2001 Feb; 128(3):365-75. PubMed ID: 11152635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm.
    Consales C; Arnone MI
    Gene; 2002 Apr; 287(1-2):75-81. PubMed ID: 11992725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualizing egg and embryonic polarity.
    Smith LT; Wikramanayake AH
    Methods Cell Biol; 2019; 150():251-268. PubMed ID: 30777179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Development; 1999 Apr; 126(8):1729-37. PubMed ID: 10079234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
    Li E; Cui M; Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E906-13. PubMed ID: 24556994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development.
    Ettensohn CA
    Sci STKE; 2006 Nov; 2006(361):pe48. PubMed ID: 17106077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
    Sherwood DR; McClay DR
    Development; 1997 Sep; 124(17):3363-74. PubMed ID: 9310331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning and lineage specification in the amphibian embryo.
    Chan AP; Etkin LD
    Curr Top Dev Biol; 2001; 51():1-67. PubMed ID: 11236711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination and morphogenesis in the sea urchin embryo.
    Wilt FH
    Development; 1987 Aug; 100(4):559-76. PubMed ID: 3443047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.