BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 11837954)

  • 1. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.
    Lipkens B
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):509-19. PubMed ID: 11837956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts.
    Piacsek AA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):520-9. PubMed ID: 11837957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuations of spherical waves in a turbulent atmosphere: effect of the axisymmetric approximation in computational methods.
    Salomons EM
    J Acoust Soc Am; 2000 Oct; 108(4):1528-34. PubMed ID: 11051480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence.
    Stout TA; Sparrow VW; Blanc-Benon P
    J Acoust Soc Am; 2021 May; 149(5):3250. PubMed ID: 34241145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric turbulence effects on shaped and unshaped sonic boom signatures.
    Stout TA; Sparrow VW
    J Acoust Soc Am; 2022 May; 151(5):3280. PubMed ID: 35649900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model experiment to study sonic boom propagation through turbulence. Part II. Effect of turbulence intensity and propagation distance through turbulence.
    Lipkens B; Blackstock DT
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1301-9. PubMed ID: 9745733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical wave propagation through inhomogeneous, anisotropic turbulence: log-amplitude and phase correlations.
    Ostashev VE; Wilson DK; Goedecke GH
    J Acoust Soc Am; 2004 Jan; 115(1):120-30. PubMed ID: 14759002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence.
    Salze É; Yuldashev P; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2014 Aug; 136(2):556-66. PubMed ID: 25096090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ground blocking on the acoustic phase variance in a turbulent atmosphere.
    Ostashev VE; Wilson DK; Hart CR
    J Acoust Soc Am; 2023 Jul; 154(1):346-360. PubMed ID: 37458514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound propagation in a turbulent atmosphere near the ground: a parabolic equation approach.
    Ostashev VE; Salomons EM; Clifford SF; Lataitis RJ; Wilson DK; Blanc-Benon P; Juvé D
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1894-908. PubMed ID: 11386544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound-wave coherence in atmospheric turbulence with intrinsic and global intermittency.
    Wilson DK; Ostashev VE; Goedecke GH
    J Acoust Soc Am; 2008 Aug; 124(2):743-57. PubMed ID: 18681567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium.
    Ganjehi L; Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2008 Jul; 124(1):57-71. PubMed ID: 18646955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
    Ehrhardt L; Cheinet S; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2013 Apr; 133(4):1922-33. PubMed ID: 23556562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical method for describing the paraxial region of finite amplitude sound beams.
    Hamilton MF; Khokhlova VA; Rudenko OV
    J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics.
    Ostashev VE; Wilson DK; Muhlestein MB; Attenborough K
    J Acoust Soc Am; 2018 Feb; 143(2):1194. PubMed ID: 29495703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.