These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11838288)

  • 21. Acute toxicity and hazard assessment of spinosad and R-11 to three cladoceran species and Coho salmon.
    Deardorff AD; Stark JD
    Bull Environ Contam Toxicol; 2009 May; 82(5):549-53. PubMed ID: 19159051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lethal and sub-lethal effects of select macrocyclic lactones insecticides on forager worker honey bees under laboratory experimental conditions.
    Abdu-Allah GAM; Pittendrigh BR
    Ecotoxicology; 2018 Jan; 27(1):81-88. PubMed ID: 29134493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Demographic changes in Daphnia pulex (Leydig) after exposure to the insecticides spinosad and diazinon.
    Stark JD; Vargas RI
    Ecotoxicol Environ Saf; 2003 Nov; 56(3):334-8. PubMed ID: 14575672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spatially and temporally explicit risk assessment for salmon from a prey base exposed to agricultural insecticides.
    Poletika NN; Teply M; Dominguez LG; Cramer SP; Schocken MJ; Habig C; Kern M; Ochoa-Acuña H; Mitchell GC
    Integr Environ Assess Manag; 2012 Apr; 8(2):285-300. PubMed ID: 22124951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinosad-mediated effects in the post-embryonic development of Partamona helleri (Hymenoptera: Apidae: Meliponini).
    Araujo RDS; Bernardes RC; Fernandes KM; Lima MAP; Martins GF; Tavares MG
    Environ Pollut; 2019 Oct; 253():11-18. PubMed ID: 31302396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Population-level effects of spinosad and Bacillus thuringiensis israelensis in Daphnia pulex and Daphnia magna: comparison of laboratory and field microcosm exposure conditions.
    Duchet C; Coutellec MA; Franquet E; Lagneau C; Lagadic L
    Ecotoxicology; 2010 Oct; 19(7):1224-37. PubMed ID: 20552396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population-level toxicity of the insecticide, spinosad and the nonylphenol polyethoxylate, R-11, to the cladoceran species Ceriodaphnia dubia Richard.
    Deardorff AD; Stark JD
    J Environ Sci Health B; 2011; 46(4):336-40. PubMed ID: 21512932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Risk to pollinators from the use of chlorpyrifos in the United States.
    Cutler GC; Purdy J; Giesy JP; Solomon KR
    Rev Environ Contam Toxicol; 2014; 231():219-65. PubMed ID: 24723137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Spinosad-Based Formulation Reduces the Survival and Alters the Behavior of the Stingless Bee Plebeia lucii.
    Marques RD; Lima MAP; Marques RD; Bernardes RC
    Neotrop Entomol; 2020 Aug; 49(4):578-585. PubMed ID: 32347525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers.
    Lopes MP; Fernandes KM; Tomé HVV; Gonçalves WG; Miranda FR; Serrão JE; Martins GF
    Pest Manag Sci; 2018 Jun; 74(6):1311-1318. PubMed ID: 29194936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Refined avian risk assessment for chlorpyrifos in the United States.
    Moore DR; Teed RS; Greer CD; Solomon KR; Giesy JP
    Rev Environ Contam Toxicol; 2014; 231():163-217. PubMed ID: 24723136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probabilistic risk assessment of cotton pyrethroids: IV. Landscape-level exposure characterization.
    Travis KZ; Hendley P
    Environ Toxicol Chem; 2001 Mar; 20(3):679-86. PubMed ID: 11349871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population-level effects and recovery of aquatic invertebrates after multiple applications of an insecticide.
    Dohmen GP; Preuss TG; Hamer M; Galic N; Strauss T; van den Brink PJ; De Laender F; Bopp S
    Integr Environ Assess Manag; 2016 Jan; 12(1):67-81. PubMed ID: 26119989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids.
    Sparks TC; Crouse GD; Durst G
    Pest Manag Sci; 2001 Oct; 57(10):896-905. PubMed ID: 11695182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic toxicity of chloride to freshwater species: effects of hardness and implications for water quality guidelines.
    Elphick JR; Bergh KD; Bailey HC
    Environ Toxicol Chem; 2011 Jan; 30(1):239-46. PubMed ID: 20872898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extrapolation of acute toxicity across bee species.
    Thompson H
    Integr Environ Assess Manag; 2016 Oct; 12(4):622-6. PubMed ID: 26595163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity, attraction, and repellency of toxic baits to stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini).
    Padilha AC; Piovesan B; Morais MC; Arioli CJ; Zotti MJ; Grützmacher AD; Botton M
    Ecotoxicol Environ Saf; 2019 Nov; 183():109490. PubMed ID: 31398582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probabilistic risk assessment of cotton pyrethroids: II. Aquatic mesocosm and field studies.
    Giddings JM; Solomon KR; Maund SJ
    Environ Toxicol Chem; 2001 Mar; 20(3):660-8. PubMed ID: 11349869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinosad: a new larvicide against insecticide-resistant mosquito larvae.
    Darriet F; Duchon S; Hougard JM
    J Am Mosq Control Assoc; 2005 Dec; 21(4):495-6. PubMed ID: 16506584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory evaluation of two novel strategies to control first-instar gypsy moth larvae with spinosad applied to tree trunks.
    Wanner KW; Helson BV; Harris BJ
    Pest Manag Sci; 2002 Aug; 58(8):817-24. PubMed ID: 12192907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.