These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11838288)

  • 41. Acute tier-1 and tier-2 effect assessment approaches in the EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides?
    van Wijngaarden RP; Maltby L; Brock TC
    Pest Manag Sci; 2015 Aug; 71(8):1059-67. PubMed ID: 25367890
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers.
    Cabrera-Marín NV; Liedo P; Sánchez D
    J Econ Entomol; 2016 Apr; 109(2):515-9. PubMed ID: 26739308
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ecological hazard assessment of dioxins: hazards to organisms at different levels of aquatic food webs (fish-eating birds and mammals, fish and invertebrates).
    Loonen H; van de Guchte C; Parsons JR; de Voogt P; Govers HA
    Sci Total Environ; 1996 Apr; 182(1-3):93-103. PubMed ID: 8854941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aquatic life water quality criteria derived via the UC Davis method: I. Organophosphate insecticides.
    Palumbo AJ; Tenbrook PL; Fojut TL; Faria IR; Tjeerdema RS
    Rev Environ Contam Toxicol; 2012; 216():1-49. PubMed ID: 22298112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficacy of insecticides of different chemistries against Helicoverpa zea (Lepidoptera: Noctuidae) in transgenic Bacillus thuringiensis and conventional cotton.
    Brickle DS; Turnipseed SG; Sullivan MJ
    J Econ Entomol; 2001 Feb; 94(1):86-92. PubMed ID: 11233138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of spinosad to beneficial insects and mites and its use in IPM.
    Miles M; Eelen H
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):275-84. PubMed ID: 17385494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of the veterinary pharmaceutical ivermectin on soil invertebrates in laboratory tests.
    Römbke J; Krogh KA; Moser T; Scheffczyk A; Liebig M
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):332-40. PubMed ID: 19882295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A site-specific ecological risk assessment for corn-associated insecticides.
    Whiting SA; Lydy MJ
    Integr Environ Assess Manag; 2015 Jul; 11(3):445-58. PubMed ID: 25557061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for negative cross resistance to insecticides in field collected Spodoptera littoralis (Boisd.) from Lebanon in laboratory bioassays.
    Miles M; Lysandrou M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):665-9. PubMed ID: 12696435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of spinosad and Bacillus thuringiensis israelensis on a natural population of Daphnia pulex in field microcosms.
    Duchet C; Larroque M; Caquet T; Franquet E; Lagneau C; Lagadic L
    Chemosphere; 2008 Dec; 74(1):70-7. PubMed ID: 18977509
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissipation behaviour of spinosad insecticide in soil, cabbage and cauliflower under subtropical conditions.
    Sharma A; Srivastava A; Ram B; Srivastava PC
    Pest Manag Sci; 2007 Nov; 63(11):1141-5. PubMed ID: 17708510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conducting model ecosystem studies in tropical climate zones: lessons learned from Thailand and way forward.
    Daam MA; Van den Brink PJ
    Environ Pollut; 2011 Apr; 159(4):940-6. PubMed ID: 21251739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes.
    Wu J; Lu J; Lu H; Lin Y; Wilson PC
    Sci Total Environ; 2015 Jun; 518-519():139-47. PubMed ID: 25747373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Threshold levels for effects of insecticides in freshwater ecosystems: a review.
    Van Wijngaarden RP; Brock TC; Van den Brink PJ
    Ecotoxicology; 2005 Apr; 14(3):355-80. PubMed ID: 15943110
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aquatic life water quality criteria derived via the UC Davis method: II. Pyrethroid insecticides.
    Fojut TL; Palumbo AJ; Tjeerdema RS
    Rev Environ Contam Toxicol; 2012; 216():51-103. PubMed ID: 22298113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site specific risk assessment of an energy-from-waste/thermal treatment facility in Durham Region, Ontario, Canada. Part B: Ecological risk assessment.
    Ollson CA; Whitfield Aslund ML; Knopper LD; Dan T
    Sci Total Environ; 2014 Jan; 466-467():242-52. PubMed ID: 23895787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic modeling of insecticide risks to breeding birds in North American agroecosystems.
    Etterson M; Garber K; Odenkirchen E
    PLoS One; 2017; 12(5):e0176998. PubMed ID: 28467479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife.
    Sparling DW; Lowe TP
    Rev Environ Contam Toxicol; 1996; 145():1-127. PubMed ID: 7494908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems.
    Cleveland CB; Bormett GA; Saunders DG; Powers FL; McGibbon AS; Reeves GL; Rutherford L; Balcer JL
    J Agric Food Chem; 2002 May; 50(11):3244-56. PubMed ID: 12009994
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action.
    Rico A; Van den Brink PJ
    Environ Toxicol Chem; 2015 Aug; 34(8):1907-17. PubMed ID: 25854193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.