BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11838668)

  • 1. Potentiometric estimation of the stability constants of ion-lonophore complexes in ion-selective membranes by the sandwich membrane method: theory, advantages, and limitations.
    Shultz MM; Stefanova OK; Mokrov SB; Mikhelson KN
    Anal Chem; 2002 Feb; 74(3):510-7. PubMed ID: 11838668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes.
    Mi Y; Bakker E
    Anal Chem; 1999 Dec; 71(23):5279-87. PubMed ID: 10596210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selectivity of lithium electrodes: correlation with ion-lonophore complex stability constants and with interfacial exchange current densities.
    Mikhelson KM; Bobacka J; Ivaska A; Lewenstam A; Bochenska M
    Anal Chem; 2002 Feb; 74(3):518-27. PubMed ID: 11838669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes.
    Bodor S; Zook JM; Lindner E; Tóth K; Gyurcsányi RE
    Analyst; 2008 May; 133(5):635-42. PubMed ID: 18427685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the separate equilibrium processes that dictate the upper detection limit of neutral ionophore-based potentiometric sensors.
    Qin Y; Bakker E
    Anal Chem; 2002 Jul; 74(13):3134-41. PubMed ID: 12141674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore for potentiometric and optical sensors.
    Qin Y; Peper S; Radu A; Ceresa A; Bakker E
    Anal Chem; 2003 Jul; 75(13):3038-45. PubMed ID: 12964748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitive binding constants of H(+)-selective chromoionophores and anion ionophores in solvent polymeric sensing membranes.
    Qin Y; Bakker E
    Talanta; 2002 Nov; 58(5):909-18. PubMed ID: 18968823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-selective electrodes with unusual response functions: simultaneous formation of ionophore-primary ion complexes with different stoichiometries.
    Miyake M; Chen LD; Pozzi G; Bühlmann P
    Anal Chem; 2012 Jan; 84(2):1104-11. PubMed ID: 22128799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate.
    Chen LD; Mandal D; Pozzi G; Gladysz JA; Bühlmann P
    J Am Chem Soc; 2011 Dec; 133(51):20869-77. PubMed ID: 22070518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.
    Pankratova N; Cuartero M; Jowett LA; Howe ENW; Gale PA; Bakker E; Crespo GA
    Biosens Bioelectron; 2018 Jan; 99():70-76. PubMed ID: 28738230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective coulometric release of ions from ion selective polymeric membranes for calibration-free titrations.
    Bhakthavatsalam V; Shvarev A; Bakker E
    Analyst; 2006 Aug; 131(8):895-900. PubMed ID: 17028722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.
    Cuartero M; Crespo GA; Bakker E
    Anal Chem; 2016 Feb; 88(3):1654-60. PubMed ID: 26712342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetry of ion transfer across a polarized room-temperature ionic liquid membrane facilitated by valinomycin: theoretical aspects and application.
    Langmaier J; Samec Z
    Anal Chem; 2009 Aug; 81(15):6382-9. PubMed ID: 19572695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiometric and theoretical studies of the carbonate sensors based on 3-bromo-4-hexyl-5-nitrotrifluoroacetophenone.
    Makarychev-Mikhailov S; Legin A; Mortensen J; Levitchev S; Vlasov Y
    Analyst; 2004 Mar; 129(3):213-8. PubMed ID: 14978522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chronoamperometric method to estimate changes in the membrane composition of ion-selective membranes.
    Pendley BD; Gyurcsányi RE; Buck RP; Lindner E
    Anal Chem; 2001 Oct; 73(19):4599-606. PubMed ID: 11605836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric Selectivities of Ionophore-Doped Ion-Selective Membranes: Concurrent Presence of Primary Ion or Interfering Ion Complexes of Multiple Stoichiometries.
    Yilmaz I; Chen LD; Chen XV; Anderson EL; da Costa RC; Gladysz JA; Bühlmann P
    Anal Chem; 2019 Feb; 91(3):2409-2417. PubMed ID: 30609363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric membrane electrodes with improved fluoride selectivity and lifetime based on Zr(IV)- and Al(III)-tetraphenylporphyrin derivatives.
    Pietrzak M; Meyerhoff ME; Malinowska E
    Anal Chim Acta; 2007 Jul; 596(2):201-9. PubMed ID: 17631098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes.
    Telting-Diaz M; Bakker E
    Anal Chem; 2001 Nov; 73(22):5582-9. PubMed ID: 11816591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores.
    Almeida SA; Heitor AM; Montenegro MC; Sales MG
    Talanta; 2011 Sep; 85(3):1508-16. PubMed ID: 21807216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine.
    Guinovart T; Hernández-Alonso D; Adriaenssens L; Blondeau P; Rius FX; Ballester P; Andrade FJ
    Biosens Bioelectron; 2017 Jan; 87():587-592. PubMed ID: 27619523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.