These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11839476)

  • 1. Photoinduced kinetics of bacteriorhodopsin in a dried xerogel glass.
    Shamansky LM; Luong KM; Han D; Chronister EL
    Biosens Bioelectron; 2002 Mar; 17(3):227-31. PubMed ID: 11839476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin.
    Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS
    Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin.
    Radionov AN; Kaulen AD
    FEBS Lett; 1995 Dec; 377(3):330-2. PubMed ID: 8549749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant.
    Delaney JK; Subramaniam S
    Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of bacteriorhodopsin activity in dried sol-gel glass.
    Weetall HH
    Biosens Bioelectron; 1996; 11(3):327-33. PubMed ID: 8562012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the N intermediate and the two pathways of recovery of the ground-state of bacteriorhodopsin.
    Tokaji Z; Dancsházy Z
    FEBS Lett; 1992 Oct; 311(3):267-70. PubMed ID: 1397327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelations of M-intermediates in bacteriorhodopsin photocycle.
    Drachev LA; Kaulen AD; Komrakov AYu
    FEBS Lett; 1992 Nov; 313(3):248-50. PubMed ID: 1446744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorientations in the bacteriorhodopsin photocycle.
    Song Q; Harms GS; Wan C; Johnson CK
    Biochemistry; 1994 Nov; 33(47):14026-33. PubMed ID: 7947812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoisomerization of the chromophore in bacteriorhodopsin during the proton pumping photocycle.
    Mowery PC; Stoeckenius W
    Biochemistry; 1981 Apr; 20(8):2302-6. PubMed ID: 7236601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin.
    Milder SJ; Thorgeirsson TE; Miercke LJ; Stroud RM; Kliger DS
    Biochemistry; 1991 Feb; 30(7):1751-61. PubMed ID: 1993191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.
    Subramaniam S; Marti T; Rösselet SJ; Rothschild KJ; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2583-7. PubMed ID: 2006195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the M(N) (M(open)) intermediate in the wild-type bacteriorhodopsin photocycle is accompanied by an absorption spectrum shift to shorter wavelength, like that in the mutant D96N bacteriorhodopsin photocycle.
    Radionov AN; Klyachko VA; Kaulen AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1210-4. PubMed ID: 10561570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced transformation of 14-F-bacteriorhodopsin gelatin films based on both wild type and D96N mutant.
    Druzhko AB; Shakhbazian VY; Alvarez R; de Lera AR; Weetall HH
    Biosystems; 2001 Jan; 59(1):53-60. PubMed ID: 11226626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flash kinetic study of the last steps in the photoinduced reaction cycle of bacteriorhodopsin.
    Gillbro T
    Biochim Biophys Acta; 1978 Oct; 504(1):175-86. PubMed ID: 708721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the photocycle and charge motions of the bacteriorhodopsin mutant D96N.
    Gergely C; Ganea C; Groma G; Váró G
    Biophys J; 1993 Dec; 65(6):2478-83. PubMed ID: 8312486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water on the structure of bacteriorhodopsin and photochemical processes in purple membranes.
    Lazarev YA; Terpugov EL
    Biochim Biophys Acta; 1980 May; 590(3):324-38. PubMed ID: 7378392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of water in the extracellular half channel of bacteriorhodopsin.
    Ganea C; Gergely C; Ludmann K; Váró G
    Biophys J; 1997 Nov; 73(5):2718-25. PubMed ID: 9370465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.