These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Deletion of NKX3.1 via CRISPR/Cas9 Induces Prostatic Intraepithelial Neoplasia in C57BL/6 Mice. Park JJ; Kim JE; Jeon Y; Lee MR; Choi JY; Song BR; Park JW; Kang MJ; Choi HJ; Bae SJ; Lee H; Kang BC; Hwang DY Technol Cancer Res Treat; 2020; 19():1533033820964425. PubMed ID: 33094683 [TBL] [Abstract][Full Text] [Related]
3. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. Iwata T; Schultz D; Hicks J; Hubbard GK; Mutton LN; Lotan TL; Bethel C; Lotz MT; Yegnasubramanian S; Nelson WG; Dang CV; Xu M; Anele U; Koh CM; Bieberich CJ; De Marzo AM PLoS One; 2010 Feb; 5(2):e9427. PubMed ID: 20195545 [TBL] [Abstract][Full Text] [Related]
4. Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with gleason score and chromosome 8p deletion. Bethel CR; Faith D; Li X; Guan B; Hicks JL; Lan F; Jenkins RB; Bieberich CJ; De Marzo AM Cancer Res; 2006 Nov; 66(22):10683-90. PubMed ID: 17108105 [TBL] [Abstract][Full Text] [Related]
5. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Kim MJ; Bhatia-Gaur R; Banach-Petrosky WA; Desai N; Wang Y; Hayward SW; Cunha GR; Cardiff RD; Shen MM; Abate-Shen C Cancer Res; 2002 Jun; 62(11):2999-3004. PubMed ID: 12036903 [TBL] [Abstract][Full Text] [Related]
6. Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Magee JA; Abdulkadir SA; Milbrandt J Cancer Cell; 2003 Mar; 3(3):273-83. PubMed ID: 12676585 [TBL] [Abstract][Full Text] [Related]
7. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Song H; Zhang B; Watson MA; Humphrey PA; Lim H; Milbrandt J Oncogene; 2009 Sep; 28(37):3307-19. PubMed ID: 19597465 [TBL] [Abstract][Full Text] [Related]
8. Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN. Sharma P; Knowell AE; Chinaranagari S; Komaragiri S; Nagappan P; Patel D; Havrda MC; Chaudhary J Mol Cancer; 2013 Jun; 12():67. PubMed ID: 23786676 [TBL] [Abstract][Full Text] [Related]
9. Initiation of prostate cancer in mice by Tp53R270H: evidence for an alternative molecular progression. Vinall RL; Chen JQ; Hubbard NE; Sulaimon SS; Shen MM; Devere White RW; Borowsky AD Dis Model Mech; 2012 Nov; 5(6):914-20. PubMed ID: 22563073 [TBL] [Abstract][Full Text] [Related]
10. Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice. Kladney RD; Cardiff RD; Kwiatkowski DJ; Chiang GG; Weber JD; Arbeit JM; Lu ZH Cancer Res; 2010 Nov; 70(21):8937-47. PubMed ID: 20940396 [TBL] [Abstract][Full Text] [Related]
11. Loss of glutathione peroxidase 3 induces ROS and contributes to prostatic hyperplasia in Nkx3.1 knockout mice. Kim U; Kim CY; Lee JM; Ryu B; Kim J; Bang J; Ahn N; Park JH Andrology; 2020 Sep; 8(5):1486-1493. PubMed ID: 32450005 [TBL] [Abstract][Full Text] [Related]
12. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. Kwak MK; Johnson DT; Zhu C; Lee SH; Ye DW; Luong R; Sun Z PLoS One; 2013; 8(1):e53476. PubMed ID: 23308230 [TBL] [Abstract][Full Text] [Related]
13. Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptor alpha allele in the prostate epithelium. Huang J; Powell WC; Khodavirdi AC; Wu J; Makita T; Cardiff RD; Cohen MB; Sucov HM; Roy-Burman P Cancer Res; 2002 Aug; 62(16):4812-9. PubMed ID: 12183441 [TBL] [Abstract][Full Text] [Related]
14. Roles for Nkx3.1 in prostate development and cancer. Bhatia-Gaur R; Donjacour AA; Sciavolino PJ; Kim M; Desai N; Young P; Norton CR; Gridley T; Cardiff RD; Cunha GR; Abate-Shen C; Shen MM Genes Dev; 1999 Apr; 13(8):966-77. PubMed ID: 10215624 [TBL] [Abstract][Full Text] [Related]
15. Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Asatiani E; Huang WX; Wang A; Rodriguez Ortner E; Cavalli LR; Haddad BR; Gelmann EP Cancer Res; 2005 Feb; 65(4):1164-73. PubMed ID: 15734999 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Abdulkadir SA Ann N Y Acad Sci; 2005 Nov; 1059():33-40. PubMed ID: 16382041 [TBL] [Abstract][Full Text] [Related]
17. Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Banach-Petrosky W; Ouyang X; Gao H; Nader K; Ji Y; Suh N; DiPaola RS; Abate-Shen C Clin Cancer Res; 2006 Oct; 12(19):5895-901. PubMed ID: 17020998 [TBL] [Abstract][Full Text] [Related]
18. The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision. Luchman HA; Benediktsson H; Villemaire ML; Peterson AC; Jirik FR PLoS One; 2008; 3(12):e3940. PubMed ID: 19081794 [TBL] [Abstract][Full Text] [Related]
19. Conditional Deletion of Eaf1 Induces Murine Prostatic Intraepithelial Neoplasia in Mice. Pascal LE; Su F; Wang D; Ai J; Song Q; Wang Y; O'Malley KJ; Cross B; Rigatti LH; Green A; Dhir R; Wang Z Neoplasia; 2019 Aug; 21(8):752-764. PubMed ID: 31229879 [TBL] [Abstract][Full Text] [Related]
20. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Bowen C; Bubendorf L; Voeller HJ; Slack R; Willi N; Sauter G; Gasser TC; Koivisto P; Lack EE; Kononen J; Kallioniemi OP; Gelmann EP Cancer Res; 2000 Nov; 60(21):6111-5. PubMed ID: 11085535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]