These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11839998)

  • 1. The flutter device and expiratory pressures.
    Brooks D; Newbold E; Kozar LF; Rivera M
    J Cardiopulm Rehabil; 2002; 22(1):53-7. PubMed ID: 11839998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of two oscillating positive expiratory pressure devices: Acapella versus Flutter.
    Volsko TA; DiFiore J; Chatburn RL
    Respir Care; 2003 Feb; 48(2):124-30. PubMed ID: 12556253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of the Flutter VRP1 under different flows and angles.
    Alves LA; Pitta F; Brunetto AF
    Respir Care; 2008 Mar; 53(3):316-23. PubMed ID: 18291047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubing internal diameter affects the pressures and oscillation frequencies generated by the therapist-made bubble-positive expiratory pressure device.
    Santos MD; Milross MA; Eisenhuth JP; Alison JA
    Physiother Theory Pract; 2020 Feb; 36(2):333-339. PubMed ID: 29897304
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of flutter and PEP mask physiotherapy on symptoms and lung function in children with cystic fibrosis.
    van Winden CM; Visser A; Hop W; Sterk PJ; Beckers S; de Jongste JC
    Eur Respir J; 1998 Jul; 12(1):143-7. PubMed ID: 9701429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical behaviors of Flutter VRP1, Shaker, and Acapella devices.
    dos Santos AP; Guimarães RC; de Carvalho EM; Gastaldi AC
    Respir Care; 2013 Feb; 58(2):298-304. PubMed ID: 22906833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of Flutter®VRP1 components on mucus transport of patients with bronchiectasis.
    Tambascio J; de Souza LT; Lisboa RM; Passarelli Rde C; de Souza HC; Gastaldi AC
    Respir Med; 2011 Sep; 105(9):1316-21. PubMed ID: 21641196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Utilization of a high frequency oral oscillatory device with mechanical ventilation].
    Fitipaldi RM; Azeredo CA
    Rev Bras Ter Intensiva; 2006 Mar; 18(1):34-7. PubMed ID: 25310325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressures and Oscillation Frequencies Generated by Bubble-Positive Expiratory Pressure Devices.
    Santos MD; Milross MA; Eisenhuth JP; Alison JA
    Respir Care; 2017 Apr; 62(4):444-450. PubMed ID: 28143962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Functional Characteristics of 4 Oscillatory Positive Pressure Devices in a Simulated Cystic Fibrosis Model.
    Van Fleet H; Dunn DK; McNinch NL; Volsko TA
    Respir Care; 2017 Apr; 62(4):451-458. PubMed ID: 28292973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the Performance Characteristics of Different Positive Expiratory Pressure Devices.
    Franks LJ; Walsh JR; Hall K; Jacuinde G; Yerkovich S; Morris NR
    Respir Care; 2019 Apr; 64(4):434-444. PubMed ID: 30670668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical analysis of an oscillatory positive expiratory pressure device used in respiratory rehabilitation.
    Alves CE; Nunes LQ; Melo PL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2477-80. PubMed ID: 21096164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological effects of vibration in subjects with cystic fibrosis.
    McCarren B; Alison JA
    Eur Respir J; 2006 Jun; 27(6):1204-9. PubMed ID: 16455834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 6 Oscillatory Positive Expiratory Pressure Devices During Active Expiratory Flow.
    Poncin W; Reychler G; Liistro M; Liistro G
    Respir Care; 2020 Apr; 65(4):492-499. PubMed ID: 31744866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Function of a New Conical Positive Expiratory Pressure Device to Be Used During Exercise.
    Phimphasak C; Ubolsakka-Jones C; Jones DA
    Respir Care; 2018 Aug; 63(8):966-980. PubMed ID: 30042124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.
    DiBlasi RM; Salyer JW; Zignego JC; Redding GJ; Richardson CP
    Respir Care; 2008 Nov; 53(11):1450-60. PubMed ID: 18957147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomised crossover study of the Flutter device and the active cycle of breathing technique in non-cystic fibrosis bronchiectasis.
    Thompson CS; Harrison S; Ashley J; Day K; Smith DL
    Thorax; 2002 May; 57(5):446-8. PubMed ID: 11978924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of the Flutter device for airway mucus clearance in patients with cystic fibrosis.
    Konstan MW; Stern RC; Doershuk CF
    J Pediatr; 1994 May; 124(5 Pt 1):689-93. PubMed ID: 8176554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term comparative trial of positive expiratory pressure versus oscillating positive expiratory pressure (flutter) physiotherapy in the treatment of cystic fibrosis.
    McIlwaine PM; Wong LT; Peacock D; Davidson AG
    J Pediatr; 2001 Jun; 138(6):845-50. PubMed ID: 11391327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sputum oscillations and rhDNase in vitro: a combined approach to treat cystic fibrosis lung disease.
    Dasgupta B; Brown NE; King M
    Pediatr Pulmonol; 1998 Oct; 26(4):250-5. PubMed ID: 9811074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.