BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11840213)

  • 1. Within-meal gut feedback signaling.
    Moran TH; Ladenheim EE; Schwartz GJ
    Int J Obes Relat Metab Disord; 2001 Dec; 25 Suppl 5():S39-41. PubMed ID: 11840213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCK elicits and modulates vagal afferent activity arising from gastric and duodenal sites.
    Schwartz GJ; Moran TH
    Ann N Y Acad Sci; 1994 Mar; 713():121-8. PubMed ID: 8185153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food and symptom generation in functional gastrointestinal disorders: physiological aspects.
    Farré R; Tack J
    Am J Gastroenterol; 2013 May; 108(5):698-706. PubMed ID: 23458851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals.
    Schwartz GJ; Moran TH
    Neurosci Biobehav Rev; 1996; 20(1):47-56. PubMed ID: 8622829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capsaicin-sensitive vagal afferents and CCK in inhibition of gastric motor function induced by intestinal nutrients.
    Raybould HE
    Peptides; 1991; 12(6):1279-83. PubMed ID: 1815214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats.
    Schwartz GJ; Tougas G; Moran TH
    Peptides; 1995; 16(4):707-11. PubMed ID: 7479306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted disruption of the murine CCK1 receptor gene reduces intestinal lipid-induced feedback inhibition of gastric function.
    Whited KL; Thao D; Lloyd KC; Kopin AS; Raybould HE
    Am J Physiol Gastrointest Liver Physiol; 2006 Jul; 291(1):G156-62. PubMed ID: 16574983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat.
    Schwartz GJ; Moran TH
    Am J Physiol; 1998 May; 274(5):R1236-42. PubMed ID: 9644035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R872-6. PubMed ID: 8238459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of gastrointestinal vagal afferents in the control of food intake: current prospects.
    Schwartz GJ
    Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut peptide signaling in the controls of food intake.
    Moran TH
    Obesity (Silver Spring); 2006 Aug; 14 Suppl 5():250S-253S. PubMed ID: 17021376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1991 Jul; 261(1 Pt 2):R64-9. PubMed ID: 1858957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholecystokinin and gut-brain signalling.
    Dockray GJ
    Regul Pept; 2009 Jun; 155(1-3):6-10. PubMed ID: 19345244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway.
    Glatzle J; Darcel N; Rechs AJ; Kalogeris TJ; Tso P; Raybould HE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R354-9. PubMed ID: 15117731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrointestinal satiety signals II. Cholecystokinin.
    Moran TH; Kinzig KP
    Am J Physiol Gastrointest Liver Physiol; 2004 Feb; 286(2):G183-8. PubMed ID: 14715515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal.
    Raybould HE; Zittel TT; Holzer HH; Lloyd KC; Meyer JH
    Dig Dis Sci; 1994 Dec; 39(12 Suppl):41S-43S. PubMed ID: 7995213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy.
    Wickbom J; Herrington MK; Permert J; Jansson A; Arnelo U
    Regul Pept; 2008 Jun; 148(1-3):21-5. PubMed ID: 18456348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut peptide signals in the control of food intake.
    Moran TH; Ladenheim EE
    Discov Med; 2005 Oct; 5(29):467-71. PubMed ID: 20704844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrointestinal factors in hunger and satiety.
    Houpt KA
    Neurosci Biobehav Rev; 1982; 6(2):145-64. PubMed ID: 6285233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.