These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11840213)

  • 21. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance.
    Dockray GJ; Burdyga G
    Acta Physiol (Oxf); 2011 Mar; 201(3):313-21. PubMed ID: 21062423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological role of dietary free glutamate in the food digestion.
    Uneyama H; San Gabriel A; Kawai M; Tomoe M; Torii K
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():372-5. PubMed ID: 18296382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Regulation of food intake].
    Schusdziarra V
    Zentralbl Chir; 1996; 121(5):354-7. PubMed ID: 8677694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biology of eating behavior in obesity.
    Schwartz GJ
    Obes Res; 2004 Nov; 12 Suppl 2():102S-6S. PubMed ID: 15601957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholecystokinin.
    Dockray GJ
    Curr Opin Endocrinol Diabetes Obes; 2012 Feb; 19(1):8-12. PubMed ID: 22157397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced mechanosensitivity of duodenal vagal afferent neurons after an acute switch from milk-based to plant-based diets in anaesthetized pigs.
    Bligny D; Blat S; Chauvin A; Guérin S; Malbert CH
    J Physiol Pharmacol; 2005 Jun; 56 Suppl 3():89-100. PubMed ID: 16077197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats.
    Rasmussen BA; Breen DM; Luo P; Cheung GW; Yang CS; Sun B; Kokorovic A; Rong W; Lam TK
    Gastroenterology; 2012 Apr; 142(4):834-843.e3. PubMed ID: 22245844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of continuous microchip (MC) vagal neuromodulation on gastrointestinal function in rats.
    Krolczyk G; Zurowski D; Sobocki J; Słowiaczek MP; Laskiewicz J; Matyja A; Zaraska K; Zaraska W; Thor PJ
    J Physiol Pharmacol; 2001 Dec; 52(4 Pt 1):705-15. PubMed ID: 11787768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents.
    Gourcerol G; Million M; Adelson DW; Wang Y; Wang L; Rivier J; St-Pierre DH; Taché Y
    Peptides; 2006 Nov; 27(11):2811-9. PubMed ID: 16934368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of gastric emptying.
    Burks TF; Galligan JJ; Porreca F; Barber WD
    Fed Proc; 1985 Nov; 44(14):2897-901. PubMed ID: 2865173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitization of mechanosensitive gastric vagal afferent fibers in the rat by thermal and chemical stimuli and gastric ulcers.
    Kang YM; Bielefeldt K; Gebhart GF
    J Neurophysiol; 2004 May; 91(5):1981-9. PubMed ID: 15069095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pregnancy-related plasticity of gastric vagal afferent signals in mice.
    Li H; Clarke GS; Christie S; Ladyman SR; Kentish SJ; Young RL; Gatford KL; Page AJ
    Am J Physiol Gastrointest Liver Physiol; 2021 Jan; 320(2):G183-G192. PubMed ID: 33206550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stomach-brain communication by vagal afferents in response to luminal acid backdiffusion, gastrin, and gastric acid secretion.
    Danzer M; Jocic M; Samberger C; Painsipp E; Bock E; Pabst MA; Crailsheim K; Schicho R; Lippe IT; Holzer P
    Am J Physiol Gastrointest Liver Physiol; 2004 Mar; 286(3):G403-11. PubMed ID: 14592947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of vagal efferents in regulation of gastric emptying and motility in rats.
    Królczyk G; Zurowski D; Dobrek Ł; Laskiewicz J; Thor PJ
    Folia Med Cracov; 2001; 42(3):141-8. PubMed ID: 12353421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain-gut axis and its role in the control of food intake.
    Konturek SJ; Konturek JW; Pawlik T; Brzozowski T
    J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1.
    Darcel NP; Liou AP; Tomé D; Raybould HE
    J Nutr; 2005 Jun; 135(6):1491-5. PubMed ID: 15930458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using encapsulated freeze-dried lipids to trigger a gastrointestinal vagal reflex: validation in a pig model.
    Val-Laillet D; Guerin S; Malbert CH
    Neurogastroenterol Motil; 2014 Apr; 26(4):596-601. PubMed ID: 24418239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones.
    Partosoedarso ER; Blackshaw LA
    Auton Neurosci; 2000 Sep; 83(1-2):37-48. PubMed ID: 11023627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CCK- and leptin-induced vagal afferent activation: a model for organ-specific endocrine modulation of visceral sensory information.
    Covasa M
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1542-3. PubMed ID: 16682468
    [No Abstract]   [Full Text] [Related]  

  • 40. Fat in the intestine as a regulator of appetite--role of CCK.
    Beglinger C; Degen L
    Physiol Behav; 2004 Dec; 83(4):617-21. PubMed ID: 15621067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.