These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 11840782)

  • 1. [The effect of medium viscosity on actin polymerization].
    Pershina VP; Petrov IuP; Pinaev GP
    Tsitologiia; 2001; 43(11):1061-6. PubMed ID: 11840782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps.
    Matthews JN; Yim PB; Jacobs DT; Forbes JG; Peters ND; Greer SC
    J Chem Phys; 2005 Aug; 123(7):074904. PubMed ID: 16229617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin crystal dynamics: structural implications for F-actin nucleation, polymerization, and branching mediated by the anti-parallel dimer.
    Reutzel R; Yoshioka C; Govindasamy L; Yarmola EG; Agbandje-McKenna M; Bubb MR; McKenna R
    J Struct Biol; 2004 Jun; 146(3):291-301. PubMed ID: 15099571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in polymerization and steady-state dynamics of free and gelsolin-capped filaments formed by alpha- and beta-isoactins.
    Khaitlina S; Hinssen H
    Arch Biochem Biophys; 2008 Sep; 477(2):279-84. PubMed ID: 18619940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of formin-induced nucleation of actin filaments.
    Pring M; Evangelista M; Boone C; Yang C; Zigmond SH
    Biochemistry; 2003 Jan; 42(2):486-96. PubMed ID: 12525176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization.
    Rashid R; Chee SM; Raghunath M; Wohland T
    Phys Biol; 2015 Apr; 12(3):034001. PubMed ID: 25927668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cytochrome c-induced acceleration of the reaction of muscle actin polymerization].
    Stozharov AN
    Biokhimiia; 1985 May; 50(5):860-5. PubMed ID: 2988651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chlorpromazine on actin polymerization: slackening of filament elongation and filament annealing.
    Milzani A; DalleDonne I
    Arch Biochem Biophys; 1999 Sep; 369(1):59-67. PubMed ID: 10462440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of MeH73 in actin polymerization and ATP hydrolysis.
    Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U
    J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.
    Ramos S; Manuel M; Tiago T; Duarte R; Martins J; Gutiérrez-Merino C; Moura JJ; Aureliano M
    J Inorg Biochem; 2006 Nov; 100(11):1734-43. PubMed ID: 16890293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of polymerization-competent actin.
    Klenchin VA; Khaitlina SY; Rayment I
    J Mol Biol; 2006 Sep; 362(1):140-50. PubMed ID: 16893553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium increases actin polymerization rates by enhancing the nucleation step.
    Colombo R; Milzani A; Donne ID
    J Mol Biol; 1991 Feb; 217(3):401-4. PubMed ID: 1994029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preservation of differences in the degree of polymerization of actin, isolated at different stages of ontogenesis after its purification].
    Khaĭtlina SIu; Pinaev GP
    Biokhimiia; 1976 May; 41(5):787-93. PubMed ID: 1024584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphidinolide H, a novel type of actin-stabilizing agent isolated from dinoflagellate.
    Saito SY; Feng J; Kira A; Kobayashi J; Ohizumi Y
    Biochem Biophys Res Commun; 2004 Jul; 320(3):961-5. PubMed ID: 15240142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actins from plant and animal sources tend not to form heteropolymers in vitro and function differently in plant cells.
    Jing Y; Yi K; Ren H
    Protoplasma; 2003; 222(3-4):183-91. PubMed ID: 14714207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processive capping by formin suggests a force-driven mechanism of actin polymerization.
    Kozlov MM; Bershadsky AD
    J Cell Biol; 2004 Dec; 167(6):1011-7. PubMed ID: 15596547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic analysis of polymerization dynamics with individual actin filaments.
    Fujiwara I; Takahashi S; Tadakuma H; Funatsu T; Ishiwata S
    Nat Cell Biol; 2002 Sep; 4(9):666-73. PubMed ID: 12198494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of actin polymerization by myosin subfragment-1 probed by dynamic light scattering.
    Galińska-Rakoczy A; Jachimska B; Strzelecka-Gołaszewska H
    Bioelectrochemistry; 2007 Jan; 70(1):53-7. PubMed ID: 16713749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of nonelectrolytes on the polymerization of G-actin].
    Braun AD; Mozhenok TP; Pokrovskaia TG
    Tsitologiia; 1984 May; 26(5):614-7. PubMed ID: 6433522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylisocyanate and actin polymerization: the in vitro effects of carbamylation.
    Kuckel CL; Lubit BW; Lambooy PK; Farnsworth PN
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):143-8. PubMed ID: 8448178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.