These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11841286)

  • 1. Trans-hydrogen-bond (h2)J(NN) and (h1)J(NH) couplings in the DNA A-T base pair: natural bond orbital analysis.
    Wilkens SJ; Westler WM; Weinhold F; Markley JL
    J Am Chem Soc; 2002 Feb; 124(7):1190-1. PubMed ID: 11841286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural J-coupling analysis: interpretation of scalar J-couplings in terms of natural bond orbitals.
    Wilkens SJ; Westler WM; Markley JL; Weinhold F
    J Am Chem Soc; 2001 Dec; 123(48):12026-36. PubMed ID: 11724611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.
    Sharma S; Sharma P; Singh H; Balint-Kurti GG
    J Mol Model; 2009 Jun; 15(6):623-31. PubMed ID: 19057933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine.
    Swart M; Fonseca Guerra C; Bickelhaupt FM
    J Am Chem Soc; 2004 Dec; 126(51):16718-9. PubMed ID: 15612698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-shifted hydrogen bonds and blue-shifted van der Waals contact in the standard Watson-Crick adenine-thymine base pair.
    Zhou PP; Qiu WY
    J Phys Chem A; 2009 Sep; 113(38):10306-20. PubMed ID: 19715282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex.
    Barfield M; Dingley AJ; Feigon J; Grzesiek S
    J Am Chem Soc; 2001 May; 123(17):4014-22. PubMed ID: 11457152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of H-bond mediated 3hJH2H3 coupling constants across Watson-Crick AU base pairs in RNA.
    Luy B; Richter U; DeJong ES; Sørensen OW; Marino JP
    J Biomol NMR; 2002 Oct; 24(2):133-42. PubMed ID: 12495029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remarkable metal counterion effect on the internucleotide J-couplings and chemical shifts of the N-H...N hydrogen bonds in the W-C base pairs.
    Li H; Cukier RI; Bu Y
    J Phys Chem B; 2008 Jul; 112(30):9174-81. PubMed ID: 18598072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internucleotide J-couplings and chemical shifts of the N-H···N hydrogen-bonds in the radiation-damaged guanine-cytosine base pairs.
    Li H; Zhang L; Han L; Sun W; Bu Y
    J Comput Chem; 2011 Apr; 32(6):1159-69. PubMed ID: 21387342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational magnetic modification of N,N-dioxidized pyrazine ring expanded adenine and thymine: a diradical character induced by base pairing and double protonation.
    Chen D; Bu Y
    Phys Chem Chem Phys; 2019 Sep; 21(36):20095-20106. PubMed ID: 31482894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deuterium isotope effects and fractionation factors of hydrogen-bonded A:T base pairs of DNA.
    Vakonakis I; Salazar M; Kang M; Dunbar KR; LiWang AC
    J Biomol NMR; 2003 Feb; 25(2):105-12. PubMed ID: 12652119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional study toward understanding dehydrogenation of the adenine-thymine base pair and its anion.
    Xie H; Xia F; Cao Z
    J Phys Chem A; 2007 May; 111(20):4384-90. PubMed ID: 17474725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of a Methyl Group on the Unidirectional Flow of Vibrational Energy in an Adenine-Thymine Base Pair.
    Shin HK
    J Phys Chem B; 2023 Jan; 127(1):163-171. PubMed ID: 36594729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of substituents and the environment on the NMR shielding constants of supramolecular complexes based on A-T and A-U base pairs.
    Castro AC; Swart M; Guerra CF
    Phys Chem Chem Phys; 2017 May; 19(21):13496-13502. PubMed ID: 28492643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of bifurcated hydrogen bonding effects on the 1J(N,H), 1hJ(N,H), 2hJ(N,N) couplings and 1H, 15N shieldings in model pyrroles.
    Afonin AV; Vashchenko AV
    Magn Reson Chem; 2010 Apr; 48(4):309-17. PubMed ID: 20198609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of electron correlation effects and contributions of NMR J-couplings from occupied localized molecular orbitals.
    Zarycz N; Aucar GA
    J Phys Chem A; 2012 Feb; 116(4):1272-82. PubMed ID: 22217318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study.
    Villani G
    J Phys Chem B; 2014 May; 118(20):5439-52. PubMed ID: 24813562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu2+/+ cation coordination to adenine--thymine base pair. Effects on intermolecular proton-transfer processes.
    Noguera M; Bertran J; Sodupe M
    J Phys Chem B; 2008 Apr; 112(15):4817-25. PubMed ID: 18358032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond two-dimensional infrared spectroscopy of adenine-thymine base pairs in DNA oligomers.
    Yang M; Szyc Ł; Elsaesser T
    J Phys Chem B; 2011 Feb; 115(5):1262-7. PubMed ID: 21214277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.