BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11841312)

  • 1. Proton-transfer dynamics in the activation of cytochrome P450eryF.
    Guallar V; Harris DL; Batista VS; Miller WH
    J Am Chem Soc; 2002 Feb; 124(7):1430-7. PubMed ID: 11841312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation and electronic state dependence of proton transfer in the enzymatic cycle of cytochrome P450eryF.
    Harris DL
    J Inorg Biochem; 2002 Sep; 91(4):568-85. PubMed ID: 12237223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the proton-assisted pathway to formation of the catalytically active, ferryl species of P450s by molecular dynamics studies of P450eryF.
    Harris DL; Loew GH
    J Am Chem Soc; 1996 Jul; 118(27):6377-87. PubMed ID: 11540056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF.
    Nagano S; Cupp-Vickery JR; Poulos TL
    J Biol Chem; 2005 Jun; 280(23):22102-7. PubMed ID: 15824115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF.
    Cupp-Vickery JR; Garcia C; Hofacre A; McGee-Estrada K
    J Mol Biol; 2001 Aug; 311(1):101-10. PubMed ID: 11469860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 7-Benzyloxyquinoline oxidation by P450eryF A245T: finding of a new fluorescent substrate probe.
    Khan KK; Halpert JR
    Chem Res Toxicol; 2002 Jun; 15(6):806-14. PubMed ID: 12067248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of serine-246 in cytochrome P450eryF-catalyzed hydroxylation of 6-deoxyerythronolide B.
    Kim C; Kim H; Han O
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):752-7. PubMed ID: 11388449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of two alternate water networks in Compound I formation in P450eryF.
    Sen K; Thiel W
    J Phys Chem B; 2014 Mar; 118(11):2810-20. PubMed ID: 24564366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer.
    Zhao B; Guengerich FP; Voehler M; Waterman MR
    J Biol Chem; 2005 Dec; 280(51):42188-97. PubMed ID: 16239228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of cytochrome P450eryF involved in erythromycin biosynthesis.
    Cupp-Vickery JR; Poulos TL
    Nat Struct Biol; 1995 Feb; 2(2):144-53. PubMed ID: 7749919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine.
    Winn PJ; Lüdemann SK; Gauges R; Lounnas V; Wade RC
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5361-6. PubMed ID: 11959989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the thermodynamics and cooperativity of ligand binding in cytochrome P450eryF.
    Muralidhara BK; Negi SS; Halpert JR
    J Am Chem Soc; 2007 Feb; 129(7):2015-24. PubMed ID: 17256854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subzero-temperature stabilization and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) oxygenase domain and holoenzyme.
    Perera R; Sono M; Raner GM; Dawson JH
    Biochem Biophys Res Commun; 2005 Dec; 338(1):365-71. PubMed ID: 16197919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An A245T mutation conveys on cytochrome P450eryF the ability to oxidize alternative substrates.
    Xiang H; Tschirret-Guth RA; Ortiz De Montellano PR
    J Biol Chem; 2000 Nov; 275(46):35999-6006. PubMed ID: 10956654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD; Ornstein RL
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-assisted catalysis in cytochrome P450eryF.
    Cupp-Vickery JR; Han O; Hutchinson CR; Poulos TL
    Nat Struct Biol; 1996 Jul; 3(7):632-7. PubMed ID: 8673608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrostatically driven conformational transition is involved in the mechanisms of substrate binding and cooperativity in cytochrome P450eryF.
    Davydov DR; Botchkareva AE; Kumar S; He YQ; Halpert JR
    Biochemistry; 2004 Jun; 43(21):6475-85. PubMed ID: 15157081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.