These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 11841314)
1. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. Mulder FA; Hon B; Mittermaier A; Dahlquist FW; Kay LE J Am Chem Soc; 2002 Feb; 124(7):1443-51. PubMed ID: 11841314 [TBL] [Abstract][Full Text] [Related]
2. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). Otten R; Villali J; Kern D; Mulder FA J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670 [TBL] [Abstract][Full Text] [Related]
3. Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. Mulder FA; Skrynnikov NR; Hon B; Dahlquist FW; Kay LE J Am Chem Soc; 2001 Feb; 123(5):967-75. PubMed ID: 11456632 [TBL] [Abstract][Full Text] [Related]
4. Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR. Mulder FA; Hon B; Muhandiram DR; Dahlquist FW; Kay LE Biochemistry; 2000 Oct; 39(41):12614-22. PubMed ID: 11027141 [TBL] [Abstract][Full Text] [Related]
5. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme. Maeno A; Sindhikara D; Hirata F; Otten R; Dahlquist FW; Yokoyama S; Akasaka K; Mulder FA; Kitahara R Biophys J; 2015 Jan; 108(1):133-45. PubMed ID: 25564860 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables. Brotzakis ZF; Parrinello M J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019 [TBL] [Abstract][Full Text] [Related]
7. 13C and 15N NMR study of the hydration response of T4 lysozyme and alphaB-crystallin internal dynamics. Krushelnitsky A; Zinkevich T; Mukhametshina N; Tarasova N; Gogolev Y; Gnezdilov O; Fedotov V; Belton P; Reichert D J Phys Chem B; 2009 Jul; 113(29):10022-34. PubMed ID: 19603846 [TBL] [Abstract][Full Text] [Related]
8. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments. Skrynnikov NR; Dahlquist FW; Kay LE J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879 [TBL] [Abstract][Full Text] [Related]
9. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. Skrynnikov NR; Mulder FA; Hon B; Dahlquist FW; Kay LE J Am Chem Soc; 2001 May; 123(19):4556-66. PubMed ID: 11457242 [TBL] [Abstract][Full Text] [Related]
10. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. Korzhnev DM; Kloiber K; Kanelis V; Tugarinov V; Kay LE J Am Chem Soc; 2004 Mar; 126(12):3964-73. PubMed ID: 15038751 [TBL] [Abstract][Full Text] [Related]
11. Studying excited states of proteins by NMR spectroscopy. Mulder FA; Mittermaier A; Hon B; Dahlquist FW; Kay LE Nat Struct Biol; 2001 Nov; 8(11):932-5. PubMed ID: 11685237 [TBL] [Abstract][Full Text] [Related]
12. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Lerch MT; López CJ; Yang Z; Kreitman MJ; Horwitz J; Hubbell WL Proc Natl Acad Sci U S A; 2015 May; 112(19):E2437-46. PubMed ID: 25918400 [TBL] [Abstract][Full Text] [Related]
13. Mapping transiently formed and sparsely populated conformations on a complex energy landscape. Wang Y; Papaleo E; Lindorff-Larsen K Elife; 2016 Aug; 5():. PubMed ID: 27552057 [TBL] [Abstract][Full Text] [Related]
14. A methyl Gopalan AB; Yuwen T; Kay LE; Vallurupalli P J Biomol NMR; 2018 Oct; 72(1-2):79-91. PubMed ID: 30276607 [TBL] [Abstract][Full Text] [Related]
15. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes. Hansen AL; Lundström P; Velyvis A; Kay LE J Am Chem Soc; 2012 Feb; 134(6):3178-89. PubMed ID: 22300166 [TBL] [Abstract][Full Text] [Related]
16. Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. Karunanithy G; Reinstein J; Hansen DF J Phys Chem Lett; 2020 Jul; 11(14):5649-5654. PubMed ID: 32543198 [TBL] [Abstract][Full Text] [Related]
17. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins. Vallurupalli P; Hansen DF; Lundström P; Kay LE J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480 [TBL] [Abstract][Full Text] [Related]
18. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. Eriksson AE; Baase WA; Matthews BW J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369 [TBL] [Abstract][Full Text] [Related]
19. Measuring the signs of the methyl Gopalan AB; Vallurupalli P J Biomol NMR; 2018 Mar; 70(3):187-202. PubMed ID: 29564579 [TBL] [Abstract][Full Text] [Related]
20. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. Mann G; Hermans J J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]