BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11841400)

  • 21. Molecular detection of TEL-AML1 transcripts as a diagnostic tool and for monitoring of minimal residual disease in B-lineage childhood acute lymphoblastic leukemia.
    Park HJ; Lee KE; Um JM; Choe SY; Chi XZ; Lee JA; Shin HY; Ahn HS; Bae SC
    Mol Cells; 2000 Feb; 10(1):90-5. PubMed ID: 10774753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Münster Study Group.
    Seeger K; Adams HP; Buchwald D; Beyermann B; Kremens B; Niemeyer C; Ritter J; Schwabe D; Harms D; Schrappe M; Henze G
    Blood; 1998 Mar; 91(5):1716-22. PubMed ID: 9473238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimal residual disease monitoring in childhood B lymphoblastic leukemia with t(12;21)(p13;q22); ETV6-RUNX1: concordant results using quantitation of fusion transcript and flow cytometry.
    Alm SJ; Engvall C; Asp J; Palmqvist L; Abrahamsson J; Fogelstrand L
    Int J Lab Hematol; 2017 Apr; 39(2):121-128. PubMed ID: 28004528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular quantification of response to therapy and remission status in TEL-AML1-positive childhood ALL by real-time reverse transcription polymerase chain reaction.
    Seeger K; Kreuzer KA; Lass U; Taube T; Buchwald D; Eckert C; Körner G; Schmidt CA; Henze G
    Cancer Res; 2001 Mar; 61(6):2517-22. PubMed ID: 11289124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR.
    van der Velden VH; Willemse MJ; van der Schoot CE; Hählen K; van Wering ER; van Dongen JJ
    Leukemia; 2002 May; 16(5):928-36. PubMed ID: 11986956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Two Quantitative PCR-Based Assays for Detection of Minimal Residual Disease in B-Precursor Acute Lymphoblastic Leukemia Harboring Three Major Fusion Transcripts.
    Huang YJ; Kuo MC; Jaing TH; Liu HC; Yeh TC; Chen SH; Lin TL; Yang CP; Wang PN; Sheen JM; Chang TK; Chang CH; Hu SF; Huang TY; Wang SC; Wu KH; Chiou SS; Hsiao CC; Shih LY
    J Mol Diagn; 2021 Oct; 23(10):1373-1379. PubMed ID: 34325057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Detection of BCR/ABL, MLL/AF4 and TEL/AML1 hybrid genes and monitoring of minimal residual disease in pediatric patients with acute lymphoblastic leukemia].
    Trka J; Zuna J; Haskovec C; Brabencová A; Kalinová M; Muzíková K; Paukertová R; Hrusák O; Zemanová Z; Michalová K; Starý J
    Cas Lek Cesk; 1999 Jan; 138(1):12-7. PubMed ID: 10953429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring.
    Zaliova M; Fronkova E; Krejcikova K; Muzikova K; Mejstrikova E; Stary J; Trka J; Zuna J
    Leukemia; 2009 May; 23(5):944-51. PubMed ID: 19158828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of ETV6/AML1 abnormalities in acute lymphoblastic leukaemia: incidence, alternative spliced forms and minimal residual disease value.
    Codrington R; O'Connor HE; Jalali GR; Carrara P; Papaioannou M; Hart SM; Hoffbrand AV; Potter M; Prentice HG; Harrison CJ; Foroni L
    Br J Haematol; 2000 Dec; 111(4):1071-9. PubMed ID: 11167742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring the AML1/ETO fusion transcript to predict outcome in childhood acute myeloid leukemia.
    Zhang L; Cao Z; Ruan M; Zeng Q; Zhao L; Li Q; Zou Y; Wang J; Zhu X
    Pediatr Blood Cancer; 2014 Oct; 61(10):1761-6. PubMed ID: 24920269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Relation between TEL-AML1 expression level and clinical characteristics as well as early response to treatment in children with acute lymphoblastic leukemia].
    Li ZG; Zhao W; Gao Z; Wu MY; Zhang YH; Shi HW; Xie J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Jun; 15(3):523-7. PubMed ID: 17605858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia.
    Uckun FM; Pallisgaard N; Hokland P; Navara C; Narla R; Gaynon PS; Sather H; Heerema N
    Leuk Lymphoma; 2001 Jun; 42(1-2):41-56. PubMed ID: 11699220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia.
    Pine SR; Wiemels JL; Jayabose S; Sandoval C
    Leuk Res; 2003 Feb; 27(2):155-64. PubMed ID: 12526921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time quantitative PCR: standardized detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Polymerase chain reaction.
    Pine SR; Moy FH; Wiemels JL; Gill RK; Levendoglu-Tugal O; Ozkaynak MF; Sandoval C; Jayabose S
    J Pediatr Hematol Oncol; 2003 Feb; 25(2):103-8. PubMed ID: 12571459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimal residual disease quantification in childhood acute lymphoblastic leukemia by real-time polymerase chain reaction using the SYBR green dye.
    Li AH; Forestier E; Rosenquist R; Roos G
    Exp Hematol; 2002 Oct; 30(10):1170-7. PubMed ID: 12384148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The TEL-AML1 fusion accompanied by loss of the untranslocated TEL allele in B-precursor acute lymphoblastic leukaemia of childhood.
    Kempski HM; Sturt NT
    Leuk Lymphoma; 2000 Dec; 40(1-2):39-47. PubMed ID: 11426627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia.
    Stams WA; den Boer ML; Beverloo HB; Meijerink JP; van Wering ER; Janka-Schaub GE; Pieters R
    Clin Cancer Res; 2005 Apr; 11(8):2974-80. PubMed ID: 15837750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of clonal stability of minimal residual disease targets between 1st and 2nd relapse of childhood precursor B-cell acute lymphoblastic leukemia.
    Guggemos A; Eckert C; Szczepanski T; Hanel C; Taube T; van der Velden VH; Graf-Einsiedel H; Henze G; Seeger K
    Haematologica; 2003 Jul; 88(7):737-46. PubMed ID: 12857551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: a Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry.
    Thörn I; Forestier E; Botling J; Thuresson B; Wasslavik C; Björklund E; Li A; Lindström-Eriksson E; Malec M; Grönlund E; Torikka K; Heldrup J; Abrahamsson J; Behrendtz M; Söderhäll S; Jacobsson S; Olofsson T; Porwit A; Lönnerholm G; Rosenquist R; Sundström C
    Br J Haematol; 2011 Mar; 152(6):743-53. PubMed ID: 21250970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunoglobulin light chain gene rearrangements in precursor-B-acute lymphoblastic leukemia: characteristics and applicability for the detection of minimal residual disease.
    van der Velden VH; de Bie M; van Wering ER; van Dongen JJ
    Haematologica; 2006 May; 91(5):679-82. PubMed ID: 16627258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.