These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 11841668)
1. Water deficits and hydraulic limits to leaf water supply. Sperry JS; Hacke UG; Oren R; Comstock JP Plant Cell Environ; 2002 Feb; 25(2):251-263. PubMed ID: 11841668 [TBL] [Abstract][Full Text] [Related]
2. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
3. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. Xu GQ; Chen TQ; Liu SS; Ma J; Li Y Sci Total Environ; 2023 Jan; 854():158802. PubMed ID: 36115397 [TBL] [Abstract][Full Text] [Related]
4. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
5. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Hultine KR; Koepke DF; Pockman WT; Fravolini A; Sperry JS; Williams DG Tree Physiol; 2006 Mar; 26(3):313-23. PubMed ID: 16356903 [TBL] [Abstract][Full Text] [Related]
6. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Sperry JS; Venturas MD; Anderegg WRL; Mencuccini M; Mackay DS; Wang Y; Love DM Plant Cell Environ; 2017 Jun; 40(6):816-830. PubMed ID: 27764894 [TBL] [Abstract][Full Text] [Related]
7. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618 [TBL] [Abstract][Full Text] [Related]
8. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars. Ladjal M; Huc R; Ducrey M Tree Physiol; 2005 Sep; 25(9):1109-17. PubMed ID: 15996954 [TBL] [Abstract][Full Text] [Related]
9. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
10. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Irvine J; Perks MP; Magnani F; Grace J Tree Physiol; 1998 Jun; 18(6):393-402. PubMed ID: 12651364 [TBL] [Abstract][Full Text] [Related]
11. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263 [TBL] [Abstract][Full Text] [Related]
12. Variable hydraulic resistances and their impact on plant drought response modelling. Baert A; De Schepper V; Steppe K Tree Physiol; 2015 Apr; 35(4):439-49. PubMed ID: 25273815 [TBL] [Abstract][Full Text] [Related]
13. Influence of soil porosity on water use in Pinus taeda. Hacke UG; Sperry JS; Ewers BE; Ellsworth DS; Schäfer KV; Oren R Oecologia; 2000 Sep; 124(4):495-505. PubMed ID: 28308388 [TBL] [Abstract][Full Text] [Related]
14. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots. Bucci SJ; Scholz FG; Peschiutta ML; Arias NS; Meinzer FC; Goldstein G Plant Cell Environ; 2013 Dec; 36(12):2163-74. PubMed ID: 23639077 [TBL] [Abstract][Full Text] [Related]
15. Does short-term potassium fertilization improve recovery from drought stress in laurel? Oddo E; Inzerillo S; Grisafi F; Sajeva M; Salleo S; Nardini A Tree Physiol; 2014 Aug; 34(8):906-13. PubMed ID: 24488799 [TBL] [Abstract][Full Text] [Related]
16. Water utilization, plant hydraulic properties and xylem vulnerability in three contrasting coffee (Coffea arabica) cultivars. Tausend PC; Goldstein G; Meinzer FC Tree Physiol; 2000 Feb; 20(3):159-168. PubMed ID: 12651468 [TBL] [Abstract][Full Text] [Related]
17. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening. Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973 [TBL] [Abstract][Full Text] [Related]
18. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. Davis SD; Ewers FW; Sperry JS; Portwood KA; Crocker MC; Adams GC Am J Bot; 2002 May; 89(5):820-8. PubMed ID: 21665682 [TBL] [Abstract][Full Text] [Related]
19. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Dawson TE Oecologia; 1993 Oct; 95(4):565-574. PubMed ID: 28313298 [TBL] [Abstract][Full Text] [Related]
20. Hydraulic adjustment of maple saplings to canopy gap formation. Maherali H; DeLucia EH; Sipe TW Oecologia; 1997 Nov; 112(4):472-480. PubMed ID: 28307623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]