These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11841824)

  • 1. Propofol, a general anesthetic, promotes the formation of fluid phase domains in model membranes.
    Balasubramanian SV; Campbell RB; Straubinger RM
    Chem Phys Lipids; 2002 Jan; 114(1):35-44. PubMed ID: 11841824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes.
    Peng A; Pisal DS; Doty A; Balu-Iyer SV
    Chem Phys Lipids; 2012 Jan; 165(1):15-22. PubMed ID: 22024173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does propofol alter membrane fluidity at clinically relevant concentrations? An ESR spin label study.
    Bahri MA; Seret A; Hans P; Piette J; Deby-Dupont G; Hoebeke M
    Biophys Chem; 2007 Aug; 129(1):82-91. PubMed ID: 17574724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence.
    Zorilă B; Necula G; Radu M; Bacalum M
    Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study.
    Chong PL; Wong PT
    Biochim Biophys Acta; 1993 Jul; 1149(2):260-6. PubMed ID: 8323945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order.
    Harris FM; Best KB; Bell JD
    Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study.
    Bagatolli LA; Maggio B; Aguilar F; Sotomayor CP; Fidelio GD
    Biochim Biophys Acta; 1997 Apr; 1325(1):80-90. PubMed ID: 9106485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol.
    Ionescu D; Margină D; Ilie M; Iftime A; Ganea C
    Food Chem Toxicol; 2013 Nov; 61():94-100. PubMed ID: 23523830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between artificial membranes and enflurane, a general volatile anesthetic: DPPC-enflurane interaction.
    Hauet N; Artzner F; Boucher F; Grabielle-Madelmont C; Cloutier I; Keller G; Lesieur P; Durand D; Paternostre M
    Biophys J; 2003 May; 84(5):3123-37. PubMed ID: 12719242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trifluoperazine induces domain formation in zwitterionic phosphatidylcholine but not in charged phosphatidylglycerol bilayers.
    Hendrich AB; Wesolowska O; Michalak K
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):414-25. PubMed ID: 11342176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-specific membrane-fluidizing effect of propofol.
    Tsuchiya H
    Clin Exp Pharmacol Physiol; 2001 Apr; 28(4):292-9. PubMed ID: 11251643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles.
    Sanchez SA; Bagatolli LA; Gratton E; Hazlett TL
    Biophys J; 2002 Apr; 82(4):2232-43. PubMed ID: 11916878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes.
    Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.