These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11841862)

  • 21. Structure-guided fragment screening for lead discovery.
    Verdonk ML; Hartshorn MJ
    Curr Opin Drug Discov Devel; 2004 Jul; 7(4):404-10. PubMed ID: 15338949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying drug-target engagement in live cells using sulfonyl fluoride chemical probes.
    Jones LH; Xu H; Fadeyi OO
    Methods Enzymol; 2019; 622():201-220. PubMed ID: 31155053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leveraging process integration in early drug discovery.
    Fay N; Ullmann D
    Drug Discov Today; 2002 Oct; 7(20 Suppl):S181-6. PubMed ID: 12546903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria.
    Moreira W; Ngan GJ; Low JL; Poulsen A; Chia BC; Ang MJ; Yap A; Fulwood J; Lakshmanan U; Lim J; Khoo AY; Flotow H; Hill J; Raju RM; Rubin EJ; Dick T
    mBio; 2015 May; 6(3):e00253-15. PubMed ID: 25944857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A surrogate-based approach for post-genomic partner identification.
    Pillutla RC; Hsiao K; Brissette R; Eder PS; Giordano T; Fletcher PW; Lennick M; Blume AJ; Goldstein NI
    BMC Biotechnol; 2001; 1():6. PubMed ID: 11602024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects for drug screening using the reverse two-hybrid system.
    Vidal M; Endoh H
    Trends Biotechnol; 1999 Sep; 17(9):374-81. PubMed ID: 10461184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Yeast chemical genomics and drug discovery: an update.
    Hoon S; St Onge RP; Giaever G; Nislow C
    Trends Pharmacol Sci; 2008 Oct; 29(10):499-504. PubMed ID: 18755517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potassium channels: gene family, therapeutic relevance, high-throughput screening technologies and drug discovery.
    Ford JW; Stevens EB; Treherne JM; Packer J; Bushfield M
    Prog Drug Res; 2002; 58():133-68. PubMed ID: 12079199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo and molecular target-independent discovery of orally bioavailable lead compounds for neurological disorders.
    Wing LK; Behanna HA; Van Eldik LJ; Watterson DM; Ralay Ranaivo H
    Curr Alzheimer Res; 2006 Jul; 3(3):205-14. PubMed ID: 16842097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. siRNAs in drug discovery: target validation and beyond.
    Natt F
    Curr Opin Mol Ther; 2007 Jun; 9(3):242-7. PubMed ID: 17608022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional genomic and high-content screening for target discovery and deconvolution.
    Heynen-Genel S; Pache L; Chanda SK; Rosen J
    Expert Opin Drug Discov; 2012 Oct; 7(10):955-68. PubMed ID: 22860749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Methods of experimental validation of potential target proteins for creation of new drugs].
    Ivanov AS; Veselovskiĭ AV; Archakov AI
    Biomed Khim; 2005; 51(1):2-18. PubMed ID: 15850214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SeeDs approach: integrating fragments into drug discovery.
    Hubbard RE; Davis B; Chen I; Drysdale MJ
    Curr Top Med Chem; 2007; 7(16):1568-81. PubMed ID: 17979768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel and multiplexed bead-based assays and encoding strategies.
    Yingyongnarongkul BE; How SE; Díaz-Mochón JJ; Muzerelle M; Bradley M
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):577-87. PubMed ID: 14683488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mass spectrometry-driven drug discovery for development of herbal medicine.
    Zhang A; Sun H; Wang X
    Mass Spectrom Rev; 2018 May; 37(3):307-320. PubMed ID: 28009933
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional cell-based assays in microliter volumes for ultra-high throughput screening.
    Wunder F; Kalthof B; Müller T; Hüser J
    Comb Chem High Throughput Screen; 2008 Aug; 11(7):495-504. PubMed ID: 18694386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of peptides in Diogenesis: a novel approach to drug discovery and phenomics.
    Blume AJ; Beasley J; Goldstein NI
    Biopolymers; 2000; 55(4):347-56. PubMed ID: 11169925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration.
    Urán Landaburu L; Berenstein AJ; Videla S; Maru P; Shanmugam D; Chernomoretz A; Agüero F
    Nucleic Acids Res; 2020 Jan; 48(D1):D992-D1005. PubMed ID: 31680154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.