BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11842064)

  • 41. Leg intravenous pressure during head-up tilt.
    Groothuis JT; Poelkens F; Wouters CW; Kooijman M; Hopman MT
    J Appl Physiol (1985); 2008 Sep; 105(3):811-5. PubMed ID: 18635882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space.
    Baisch JF; Wolfram G; Beck L; Drummer C; Störmer I; Buckey J; Blomqvist G
    Pflugers Arch; 2000; 441(2-3 Suppl):R52-61. PubMed ID: 11200981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An optimal control approach for blood pressure regulation during head-up tilt.
    Williams ND; Mehlsen J; Tran HT; Olufsen MS
    Biol Cybern; 2019 Apr; 113(1-2):149-159. PubMed ID: 30377766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of cardiovascular risks of spaceflight does not support the NASA bioastronautics critical path roadmap.
    Convertino VA; Cooke WH
    Aviat Space Environ Med; 2005 Sep; 76(9):869-76. PubMed ID: 16173685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardio-postural deconditioning: A model for post-flight orthostatic intolerance.
    Blaber AP; Landrock CK; Souvestre PA
    Respir Physiol Neurobiol; 2009 Oct; 169 Suppl 1():S21-5. PubMed ID: 19379846
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A baroreflex model of short term blood pressure and heart rate variability.
    TenVoorde BJ; Kingma R
    Stud Health Technol Inform; 2000; 71():179-200. PubMed ID: 10977598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. R-R interval-blood pressure interaction in subjects with different tolerances to orthostatic stress.
    Gulli G; Claydon VE; Cooper VL; Hainsworth R
    Exp Physiol; 2005 May; 90(3):367-75. PubMed ID: 15665146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Correlation between empirical and statistical indices of cardiovascular deconditioning in response to orthostatic exposures].
    Voskresenskiĭ AD; Mikhaĭlov VM; Pometov IuD
    Aviakosm Ekolog Med; 2002; 36(5):48-51. PubMed ID: 12572125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulation of short-term pressure regulation during the tilt test in a coupled 3D-0D closed-loop model of the circulation.
    Lau KD; Figueroa CA
    Biomech Model Mechanobiol; 2015 Aug; 14(4):915-29. PubMed ID: 25567754
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of lower body positive pressure on muscle sympathetic nerve activity response [correction of respopnse] to head-up tilt.
    Fu Q; Iwase S; Niimi Y; Kamiya A; Kawanokuchi J; Cui J; Mano T
    J Gravit Physiol; 2001 Jul; 8(1):P83-4. PubMed ID: 12650184
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical models of cardiovascular regulation after weightlessness.
    Robertson D; Jacob G; Ertl A; Shannon J; Mosqueda-Garcia R; Robertson RM; Biaggioni I
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S80-4. PubMed ID: 8897409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Circulatory galanin levels increase severalfold with intense orthostatic challenge in healthy humans.
    Hinghofer-Szalkay HG; Rössler A; Evans JM; Stenger MB; Moore FB; Knapp CF
    J Appl Physiol (1985); 2006 Mar; 100(3):844-9. PubMed ID: 16322373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mathematical modeling of human cardiovascular system for simulation of orthostatic response.
    Melchior FM; Srinivasan RS; Charles JB
    Am J Physiol; 1992 Jun; 262(6 Pt 2):H1920-33. PubMed ID: 1621848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-term control of cardiovascular function: estimation of control parameters in healthy humans.
    Toska K; Eriksen M; Walløe L
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H651-60. PubMed ID: 8779842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systems analysis of the mechanisms governing the cardiovascular response to changes in posture and in peripheral demand during exercise.
    Jezek F; Randall EB; Carlson BE; Beard DA
    J Mol Cell Cardiol; 2022 Feb; 163():33-55. PubMed ID: 34626617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational model of cardiovascular response to centrifugation and lower body cycling exercise.
    Diaz-Artiles A; Heldt T; Young LR
    J Appl Physiol (1985); 2019 Nov; 127(5):1453-1468. PubMed ID: 31343946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling baroreflex regulation of heart rate during orthostatic stress.
    Olufsen MS; Tran HT; Ottesen JT; ; Lipsitz LA; Novak V
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1355-68. PubMed ID: 16793939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling heart rate regulation--part I: sit-to-stand versus head-up tilt.
    Olufsen MS; Alston AV; Tran HT; Ottesen JT; Novak V
    Cardiovasc Eng; 2008 Jun; 8(2):73-87. PubMed ID: 18064571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt.
    Matzuka B; Mehlsen J; Tran H; Olufsen MS
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1992-2000. PubMed ID: 25769142
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cardiovascular Response to Posture Changes: Multiscale Modeling and
    Fois M; Maule SV; Giudici M; Valente M; Ridolfi L; Scarsoglio S
    Front Physiol; 2022; 13():826989. PubMed ID: 35250630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.