These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11842064)

  • 61. Model simulations of cardiovascular changes at the onset of moderate exercise in humans.
    Elstad M; Toska K; Walløe L
    J Physiol; 2002 Sep; 543(Pt 2):719-28. PubMed ID: 12205203
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt.
    Porta A; Bassani T; Bari V; Tobaldini E; Takahashi AC; Catai AM; Montano N
    Comput Biol Med; 2012 Mar; 42(3):298-305. PubMed ID: 21621756
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mathematical modeling of gravitational effects on the circulation: importance of the time course of venous pooling and blood volume changes in the lungs.
    van Heusden K; Gisolf J; Stok WJ; Dijkstra S; Karemaker JM
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2152-65. PubMed ID: 16632542
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Computational modeling of orthostatic intolerance for travel to Mars.
    van Loon LM; Steins A; Schulte KM; Gruen R; Tucker EM
    NPJ Microgravity; 2022 Aug; 8(1):34. PubMed ID: 35945233
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A differential autoregressive modeling approach within a point process framework for non-stationary heartbeat intervals analysis.
    Chen Z; Purdon PL; Brown EN; Barbieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3567-70. PubMed ID: 21096829
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The relation between rhythmic cardiovascular variability and reactivity to orthostatic, cognitive, and cold pressor stress.
    Hatch JP; Klatt K; Porges SW; Schroeder-Jasheway L; Supik JD
    Psychophysiology; 1986 Jan; 23(1):48-56. PubMed ID: 3945707
    [No Abstract]   [Full Text] [Related]  

  • 67. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis.
    Whittle RS; Diaz-Artiles A
    J Appl Physiol (1985); 2021 Jun; 130(6):1983-2001. PubMed ID: 33914657
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Consequences of the evolutionary cardiovascular challenge of human bipedalism: orthostatic intolerance syndromes, orthostatic hypertension.
    Esler M; Julius S; Coghlan B; Sari CI; Guo L; Esler D
    J Hypertens; 2019 Dec; 37(12):2333-2340. PubMed ID: 31335513
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mathematical modeling of cardiovascular system dynamics using a lumped parameter method.
    Shim EB; Sah JY; Youn CH
    Jpn J Physiol; 2004 Dec; 54(6):545-53. PubMed ID: 15760487
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.
    Keith Sharp M; Batzel JJ; Montani JP
    Eur J Appl Physiol; 2013 Aug; 113(8):1919-37. PubMed ID: 23539439
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Numerical simulation of the effect of sodium profile on cardiovascular response to hemodialysis.
    Lim KM; Choi SW; Min BG; Shim EB
    Yonsei Med J; 2008 Aug; 49(4):581-91. PubMed ID: 18729300
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modifications of arterial baroreflexes: obligatory roles in cardiovascular regulation in stress and poststress recovery.
    Nosaka S
    Jpn J Physiol; 1996 Aug; 46(4):271-88. PubMed ID: 8988438
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A closed-loop model of the ovine cardiovascular system.
    Ha R; Qian J; Wang D; Zwischenberger JB; Bidhani A; Clark JW
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3781-4. PubMed ID: 17271118
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cycle-averaged dynamics of a periodically driven, closed-loop circulation model.
    Heldt T; Chang JL; Chen JJ; Verghese GC; Mark RG
    Control Eng Pract; 2005 Sep; 13(9):1163-71. PubMed ID: 16050064
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparative analysis of methods for classifying the cardiovascular system's states under stress.
    Anishchenko VS; Igosheva NB; Pavlov AN; Khovanov A; Yakusheva TA
    Crit Rev Biomed Eng; 2001; 29(3):462-81. PubMed ID: 11730106
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A practical approach to parameter estimation applied to model predicting heart rate regulation.
    Olufsen MS; Ottesen JT
    J Math Biol; 2013 Jul; 67(1):39-68. PubMed ID: 22588357
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes.
    Murillo J; García-Navarro P
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3751. PubMed ID: 38018384
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural identifiability analysis of a cardiovascular system model.
    Pironet A; Dauby PC; Chase JG; Docherty PD; Revie JA; Desaive T
    Med Eng Phys; 2016 May; 38(5):433-41. PubMed ID: 26970891
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lumped parameter model of cardiovascular-respiratory interaction.
    Gaudenzi F; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():473-6. PubMed ID: 24109726
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [The analysis of heart rate stability at stressor loads by method of mathematical modeling].
    Mezentseva LV
    Ross Fiziol Zh Im I M Sechenova; 2010 Feb; 96(2):106-14. PubMed ID: 20432717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.