BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11842175)

  • 1. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms.
    Frangne N; Eggmann T; Koblischke C; Weissenböck G; Martinoia E; Klein M
    Plant Physiol; 2002 Feb; 128(2):726-33. PubMed ID: 11842175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside.
    Klein M; Weissenböck G; Dufaud A; Gaillard C; Kreuz K; Martinoia E
    J Biol Chem; 1996 Nov; 271(47):29666-71. PubMed ID: 8939899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific.
    Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G
    Phytochemistry; 2001 Jan; 56(2):153-9. PubMed ID: 11219807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates.
    Klein M; Martinoia E; Hoffmann-Thoma G; Weissenböck G
    Plant J; 2000 Feb; 21(3):289-304. PubMed ID: 10758480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis.
    Burla B; Pfrunder S; Nagy R; Francisco RM; Lee Y; Martinoia E
    Plant Physiol; 2013 Nov; 163(3):1446-58. PubMed ID: 24028845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in isovitexin-O-glycosylation during the development of young barley plants.
    Brauch D; Porzel A; Schumann E; Pillen K; Mock HP
    Phytochemistry; 2018 Apr; 148():11-20. PubMed ID: 29421507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2.
    Behrens CE; Smith KE; Iancu CV; Choe JY; Dean JV
    Sci Rep; 2019 Jan; 9(1):437. PubMed ID: 30679715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat.
    Marinova K; Pourcel L; Weder B; Schwarz M; Barron D; Routaboul JM; Debeaujon I; Klein M
    Plant Cell; 2007 Jun; 19(6):2023-38. PubMed ID: 17601828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes.
    Miao YC; Liu CJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22728-33. PubMed ID: 21149736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipeptide transport in barley mesophyll vacuoles.
    Jamaï A; Gaillard C; Delrot S; Martinoia E
    Planta; 1995; 196(3):430-3. PubMed ID: 7647680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of lucifer yellow CH into plant vacuoles--evidence for direct energization of a sulphonated substance and implications for the design of new molecular probes.
    Klein M; Martinoia E; Weissenböck G
    FEBS Lett; 1997 Dec; 420(1):86-92. PubMed ID: 9450555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.
    Song WY; Mendoza-Cózatl DG; Lee Y; Schroeder JI; Ahn SN; Lee HS; Wicker T; Martinoia E
    Plant Cell Environ; 2014 May; 37(5):1192-201. PubMed ID: 24313707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana.
    Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV
    Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo.
    Raichaudhuri A; Peng M; Naponelli V; Chen S; Sánchez-Fernández R; Gu H; Gregory JF; Hanson AD; Rea PA
    J Biol Chem; 2009 Mar; 284(13):8449-60. PubMed ID: 19136566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress.
    Böttner L; Grabe V; Gablenz S; Böhme N; Appenroth KJ; Gershenzon J; Huber M
    Plant Cell Environ; 2021 Mar; 44(3):900-914. PubMed ID: 33300188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.