These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11843144)

  • 1. Green chemical approaches toward high-quality semiconductor nanocrystals.
    Peng X
    Chemistry; 2002 Jan; 8(2):334-9. PubMed ID: 11843144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals.
    Chen Y; Kim M; Lian G; Johnson MB; Peng X
    J Am Chem Soc; 2005 Sep; 127(38):13331-7. PubMed ID: 16173766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.
    Jun YW; Choi JS; Cheon J
    Angew Chem Int Ed Engl; 2006 May; 45(21):3414-39. PubMed ID: 16642516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters.
    Jun YW; Lee JH; Choi JS; Cheon J
    J Phys Chem B; 2005 Aug; 109(31):14795-806. PubMed ID: 16852873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-large-scale syntheses of monodisperse nanocrystals.
    Park J; An K; Hwang Y; Park JG; Noh HJ; Kim JY; Park JH; Hwang NM; Hyeon T
    Nat Mater; 2004 Dec; 3(12):891-5. PubMed ID: 15568032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General synthesis of I-III-VI2 ternary semiconductor nanocrystals.
    Wang D; Zheng W; Hao C; Peng Q; Li Y
    Chem Commun (Camb); 2008 Jun; (22):2556-8. PubMed ID: 18506242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spray-based method for the production of semiconductor nanocrystals.
    Amirav L; Amirav A; Lifshitz E
    J Phys Chem B; 2005 May; 109(20):9857-60. PubMed ID: 16852190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability.
    Guo W; Li JJ; Wang YA; Peng X
    J Am Chem Soc; 2003 Apr; 125(13):3901-9. PubMed ID: 12656625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green chemistry for large-scale synthesis of semiconductor quantum dots.
    Liu JH; Fan JB; Gu Z; Cui J; Xu XB; Liang ZW; Luo SL; Zhu MQ
    Langmuir; 2008 May; 24(10):5241-4. PubMed ID: 18399665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core/Shell semiconductor nanocrystals.
    Reiss P; Protière M; Li L
    Small; 2009 Feb; 5(2):154-68. PubMed ID: 19153991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth.
    Yang H; Luan W; Tu ST; Wang ZM
    Lab Chip; 2008 Mar; 8(3):451-5. PubMed ID: 18305864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals.
    Jana NR; Peng X
    J Am Chem Soc; 2003 Nov; 125(47):14280-1. PubMed ID: 14624568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and optical properties of CdSe and CdSe/ZnS nanocrystals investigated using high-performance liquid chromatography.
    Wilcoxon JP; Provencio PP
    J Phys Chem B; 2005 Jul; 109(28):13461-71. PubMed ID: 16852684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.
    Li JJ; Wang YA; Guo W; Keay JC; Mishima TD; Johnson MB; Peng X
    J Am Chem Soc; 2003 Oct; 125(41):12567-75. PubMed ID: 14531702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-free nonaqueous synthesis of metal oxide nanostructures.
    Pinna N; Niederberger M
    Angew Chem Int Ed Engl; 2008; 47(29):5292-304. PubMed ID: 18561355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods.
    Kan S; Mokari T; Rothenberg E; Banin U
    Nat Mater; 2003 Mar; 2(3):155-8. PubMed ID: 12612671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.