These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 11843176)
1. New control of mitochondrial membrane potential and ROS formation--a hypothesis. Lee I; Bender E; Arnold S; Kadenbach B Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176 [TBL] [Abstract][Full Text] [Related]
2. Degenerative diseases, oxidative stress and cytochrome c oxidase function. Kadenbach B; Ramzan R; Vogt S Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362 [TBL] [Abstract][Full Text] [Related]
3. The role of mitochondrial membrane potential in ischemic heart failure. Kadenbach B; Ramzan R; Moosdorf R; Vogt S Mitochondrion; 2011 Sep; 11(5):700-6. PubMed ID: 21703366 [TBL] [Abstract][Full Text] [Related]
4. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial function in Leydig cell steroidogenesis. Hales DB; Allen JA; Shankara T; Janus P; Buck S; Diemer T; Hales KH Ann N Y Acad Sci; 2005 Dec; 1061():120-34. PubMed ID: 16469751 [TBL] [Abstract][Full Text] [Related]
6. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668 [TBL] [Abstract][Full Text] [Related]
7. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Lee I; Bender E; Kadenbach B Mol Cell Biochem; 2002; 234-235(1-2):63-70. PubMed ID: 12162461 [TBL] [Abstract][Full Text] [Related]
8. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids. Cassarino DS; Swerdlow RH; Parks JK; Parker WD; Bennett JP Biochem Biophys Res Commun; 1998 Jul; 248(1):168-73. PubMed ID: 9675105 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Ramzan R; Staniek K; Kadenbach B; Vogt S Biochim Biophys Acta; 2010 Sep; 1797(9):1672-80. PubMed ID: 20599681 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants. He Y; Leung KW; Zhang YH; Duan S; Zhong XF; Jiang RZ; Peng Z; Tombran-Tink J; Ge J Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1447-58. PubMed ID: 18385062 [TBL] [Abstract][Full Text] [Related]
11. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria]. Karadzhov IuS; Kudzina LIu; Zinchenko VP Biofizika; 1988; 33(1):77-82. PubMed ID: 3370241 [TBL] [Abstract][Full Text] [Related]
13. Allosteric properties of cyanobacterial cytochrome c oxidase: inhibition of the coupled enzyme by ATP and stimulation by ADP. Alge D; Wastyn M; Mayer C; Jungwirth C; Zimmermann U; Zoder R; Fromwald S; Peschek GA IUBMB Life; 1999 Aug; 48(2):187-97. PubMed ID: 10794596 [TBL] [Abstract][Full Text] [Related]
14. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL. Trancíková A; Weisová P; Kissová I; Zeman I; Kolarov J FEMS Yeast Res; 2004 Nov; 5(2):149-56. PubMed ID: 15489198 [TBL] [Abstract][Full Text] [Related]
15. High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis. Kadenbach B; Ramzan R; Vogt S Mitochondrion; 2013 Jan; 13(1):1-6. PubMed ID: 23178790 [TBL] [Abstract][Full Text] [Related]
16. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Ramzan R; Weber P; Kadenbach B; Vogt S Adv Exp Med Biol; 2012; 748():265-81. PubMed ID: 22729862 [TBL] [Abstract][Full Text] [Related]
18. Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation. Prabhakaran K; Li L; Borowitz JL; Isom GE Toxicol Appl Pharmacol; 2004 Mar; 195(2):194-202. PubMed ID: 14998685 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. Panda SK; Yamamoto Y; Kondo H; Matsumoto H C R Biol; 2008 Aug; 331(8):597-610. PubMed ID: 18606389 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Kadenbach B; Hüttemann M; Arnold S; Lee I; Bender E Free Radic Biol Med; 2000 Aug; 29(3-4):211-21. PubMed ID: 11035249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]