BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11843176)

  • 1. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degenerative diseases, oxidative stress and cytochrome c oxidase function.
    Kadenbach B; Ramzan R; Vogt S
    Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of mitochondrial membrane potential in ischemic heart failure.
    Kadenbach B; Ramzan R; Moosdorf R; Vogt S
    Mitochondrion; 2011 Sep; 11(5):700-6. PubMed ID: 21703366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria.
    Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F
    Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial function in Leydig cell steroidogenesis.
    Hales DB; Allen JA; Shankara T; Janus P; Buck S; Diemer T; Hales KH
    Ann N Y Acad Sci; 2005 Dec; 1061():120-34. PubMed ID: 16469751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani.
    Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK
    Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase.
    Lee I; Bender E; Kadenbach B
    Mol Cell Biochem; 2002; 234-235(1-2):63-70. PubMed ID: 12162461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclosporin A increases resting mitochondrial membrane potential in SY5Y cells and reverses the depressed mitochondrial membrane potential of Alzheimer's disease cybrids.
    Cassarino DS; Swerdlow RH; Parks JK; Parker WD; Bennett JP
    Biochem Biophys Res Commun; 1998 Jul; 248(1):168-73. PubMed ID: 9675105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase.
    Ramzan R; Staniek K; Kadenbach B; Vogt S
    Biochim Biophys Acta; 2010 Sep; 1797(9):1672-80. PubMed ID: 20599681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants.
    He Y; Leung KW; Zhang YH; Duan S; Zhong XF; Jiang RZ; Peng Z; Tombran-Tink J; Ge J
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1447-58. PubMed ID: 18385062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of Ca ions on the transmembrane electric potential, synthesis and hydrolysis of ATP in brain mitochondria].
    Karadzhov IuS; Kudzina LIu; Zinchenko VP
    Biofizika; 1988; 33(1):77-82. PubMed ID: 3370241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ornithine decarboxylase prevents tumor necrosis factor alpha-induced apoptosis by decreasing intracellular reactive oxygen species.
    Liu GY; Hung YC; Hsu PC; Liao YF; Chang WH; Tsay GJ; Hung HC
    Apoptosis; 2005 May; 10(3):569-81. PubMed ID: 15909119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric properties of cyanobacterial cytochrome c oxidase: inhibition of the coupled enzyme by ATP and stimulation by ADP.
    Alge D; Wastyn M; Mayer C; Jungwirth C; Zimmermann U; Zoder R; Fromwald S; Peschek GA
    IUBMB Life; 1999 Aug; 48(2):187-97. PubMed ID: 10794596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL.
    Trancíková A; Weisová P; Kissová I; Zeman I; Kolarov J
    FEMS Yeast Res; 2004 Nov; 5(2):149-56. PubMed ID: 15489198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency versus maximal performance--the cause of oxidative stress in eukaryotes: a hypothesis.
    Kadenbach B; Ramzan R; Vogt S
    Mitochondrion; 2013 Jan; 13(1):1-6. PubMed ID: 23178790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase.
    Ramzan R; Weber P; Kadenbach B; Vogt S
    Adv Exp Med Biol; 2012; 748():265-81. PubMed ID: 22729862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetic aspects of apoptosis, necrosis and mitoptosis.
    Skulachev VP
    Apoptosis; 2006 Apr; 11(4):473-85. PubMed ID: 16532373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mystery of reactive oxygen species derived from cell respiration.
    Nohl H; Gille L; Staniek K
    Acta Biochim Pol; 2004; 51(1):223-9. PubMed ID: 15094844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation.
    Prabhakaran K; Li L; Borowitz JL; Isom GE
    Toxicol Appl Pharmacol; 2004 Mar; 195(2):194-202. PubMed ID: 14998685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress.
    Panda SK; Yamamoto Y; Kondo H; Matsumoto H
    C R Biol; 2008 Aug; 331(8):597-610. PubMed ID: 18606389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.