BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11843204)

  • 21. Beryllium aerosol characteristics in the magnesium and aluminum transformation industry in Quebec: a comparison of four different sampling methodologies.
    Dufresne A; Dion C; Viau S; Cloutier Y; Perrault G
    J Occup Environ Hyg; 2009 Nov; 6(11):687-97. PubMed ID: 19757293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.
    Lee T; Lee EG; Kim SW; Chisholm WP; Kashon M; Harper M
    Ann Occup Hyg; 2012 May; 56(4):413-25. PubMed ID: 22186376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure to dust and its particle size distribution in shoe manufacture and repair workplaces measured with GRIMM laser dust monitor.
    Stroszejn-Mrowca G; Szadkowska-Stańczyk I
    Int J Occup Med Environ Health; 2003; 16(4):321-8. PubMed ID: 14964641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laboratory and field testing of sampling methods for inhalable and respirable dust.
    Linnainmaa M; Laitinen J; Leskinen A; Sippula O; Kalliokoski P
    J Occup Environ Hyg; 2008 Jan; 5(1):28-35. PubMed ID: 18041642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dust emission rates from food processing.
    Lacey SE; Conroy L; Schoonover T; Franke J; Hedeker D; Forst L
    Ann Agric Environ Med; 2006; 13(2):251-7. PubMed ID: 17195997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.
    Farcas D; Lee T; Chisholm WP; Soo JC; Harper M
    J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Respirable Mass Concentrations Measured by a Personal Dust Monitor and a Personal DataRAM to Gravimetric Measurements.
    Halterman A; Sousan S; Peters TM
    Ann Work Expo Health; 2017 Dec; 62(1):62-71. PubMed ID: 29136129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redesign of a static horizontal elutriator to perform according to the ISO 7708 respirable convention.
    Myojo T; Oyabu T; Kuroda K; Kadoya C; Nishi K; Tanaka I
    Ann Occup Hyg; 2007 Jun; 51(4):371-8. PubMed ID: 17456582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementing infrared determination of quartz particulates on novel filters for a prototype dust monitor.
    Tuchman DP; Volkwein JC; Vinson RP
    J Environ Monit; 2008 May; 10(5):671-8. PubMed ID: 18449405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respirable concrete dust--silicosis hazard in the construction industry.
    Linch KD
    Appl Occup Environ Hyg; 2002 Mar; 17(3):209-21. PubMed ID: 11871757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Dust concentration analysis in non-coal mining. Exposure evaluation based on measurements performed by occupational hygiene laboratories in the years 2001-2005 in Poland].
    Bujak-Pietrek S; Mikołajczyk U; Szadkowska-Stańczyk I
    Med Pr; 2011; 62(2):113-25. PubMed ID: 21698871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability of particle size-specific fractions of personal coal mine dust exposures.
    Seixas NS; Hewett P; Robins TG; Haney R
    Am Ind Hyg Assoc J; 1995 Mar; 56(3):243-50. PubMed ID: 7717269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermally induced filter bias in TEOM mass measurement.
    Page SJ; Tuchman DP; Vinson RP
    J Environ Monit; 2007 Jul; 9(7):760-7. PubMed ID: 17607397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of an aerosol chamber for human exposures to endotoxin.
    Taylor L; Reist PC; Boehlecke BA; Jacobs RR
    Appl Occup Environ Hyg; 2000 Mar; 15(3):303-12. PubMed ID: 10701293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.
    Hicks J; Yager J
    J Occup Environ Hyg; 2006 Aug; 3(8):448-55. PubMed ID: 16862716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Testing a revised inlet for the personal dust monitor.
    Mischler SE; Tuchman DP; Cauda EG; Colinet JF; Rubinstein EN
    J Occup Environ Hyg; 2019 Mar; 16(3):242-249. PubMed ID: 30620243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.
    Welling I; Lehtimäki M; Rautio S; Lähde T; Enbom S; Hynynen P; Hämeri K
    J Occup Environ Hyg; 2009 Feb; 6(2):90-8. PubMed ID: 19065389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of a direct-reading device to gravimetric methods for evaluating organic dust aerosols in an enclosed swine production environment.
    Taylor CD; Reynolds SJ
    Appl Occup Environ Hyg; 2001 Jan; 16(1):78-83. PubMed ID: 11202031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A prospective cohort study among new Chinese coal miners: the early pattern of lung function change.
    Wang ML; Wu ZE; Du QG; Petsonk EL; Peng KL; Li YD; Li SK; Han GH; Atffield MD
    Occup Environ Med; 2005 Nov; 62(11):800-5. PubMed ID: 16234407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines.
    Birch ME; Noll JD
    J Environ Monit; 2004 Oct; 6(10):799-806. PubMed ID: 15480493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.