These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 11843304)
1. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Farman ML; Eto Y; Nakao T; Tosa Y; Nakayashiki H; Mayama S; Leong SA Mol Plant Microbe Interact; 2002 Jan; 15(1):6-16. PubMed ID: 11843304 [TBL] [Abstract][Full Text] [Related]
2. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Chauhan RS; Farman ML; Zhang HB; Leong SA Mol Genet Genomics; 2002 Jul; 267(5):603-12. PubMed ID: 12172799 [TBL] [Abstract][Full Text] [Related]
3. Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. Tosa Y; Osue J; Eto Y; Oh HS; Nakayashiki H; Mayama S; Leong SA Mol Plant Microbe Interact; 2005 Nov; 18(11):1148-60. PubMed ID: 16353550 [TBL] [Abstract][Full Text] [Related]
4. AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.). Zheng Y; Zheng W; Lin F; Zhang Y; Yi Y; Wang B; Lu G; Wang Z; Wu W Mol Plant Microbe Interact; 2011 Jan; 24(1):13-7. PubMed ID: 20879839 [TBL] [Abstract][Full Text] [Related]
5. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Dioh W; Tharreau D; Notteghem JL; Orbach M; Lebrun MH Mol Plant Microbe Interact; 2000 Feb; 13(2):217-27. PubMed ID: 10659712 [TBL] [Abstract][Full Text] [Related]
6. Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass possess a functional copy of the AVR1-CO39 avirulence gene. Peyyala R; Farman ML Mol Plant Pathol; 2006 May; 7(3):157-65. PubMed ID: 20507436 [TBL] [Abstract][Full Text] [Related]
7. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Ribot C; Césari S; Abidi I; Chalvon V; Bournaud C; Vallet J; Lebrun MH; Morel JB; Kroj T Plant J; 2013 Apr; 74(1):1-12. PubMed ID: 23279638 [TBL] [Abstract][Full Text] [Related]
8. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fudal I; Böhnert HU; Tharreau D; Lebrun MH Fungal Genet Biol; 2005 Sep; 42(9):761-72. PubMed ID: 15978851 [TBL] [Abstract][Full Text] [Related]
9. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Valent B; Farrall L; Chumley FG Genetics; 1991 Jan; 127(1):87-101. PubMed ID: 2016048 [TBL] [Abstract][Full Text] [Related]
10. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Kang S; Lebrun MH; Farrall L; Valent B Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731 [TBL] [Abstract][Full Text] [Related]
11. [Genetic analysis and molecular marker of Avr-Pi1, Avr-Pi2 and Avr-Pi4a of Magnaporthe grisea]. Wang BH; Lu GD; Lin WM; Wang ZH Yi Chuan Xue Bao; 2002 Sep; 29(9):820-6. PubMed ID: 12561231 [TBL] [Abstract][Full Text] [Related]
13. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Khang CH; Park SY; Lee YH; Valent B; Kang S Mol Plant Microbe Interact; 2008 May; 21(5):658-70. PubMed ID: 18393625 [TBL] [Abstract][Full Text] [Related]
14. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Farman ML; Leong SA Genetics; 1998 Nov; 150(3):1049-58. PubMed ID: 9799257 [TBL] [Abstract][Full Text] [Related]
15. Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Chen QH; Wang YC; Zheng XB Genome; 2006 Aug; 49(8):873-81. PubMed ID: 17036061 [TBL] [Abstract][Full Text] [Related]
16. A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning. Zhu H; Choi S; Johnston AK; Wing RA; Dean RA Fungal Genet Biol; 1997 Jun; 21(3):337-47. PubMed ID: 9290247 [TBL] [Abstract][Full Text] [Related]
17. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
18. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Villalba F; Lebrun MH; Hua-Van A; Daboussi MJ; Grosjean-Cournoyer MC Mol Plant Microbe Interact; 2001 Mar; 14(3):308-15. PubMed ID: 11277428 [TBL] [Abstract][Full Text] [Related]
19. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766 [TBL] [Abstract][Full Text] [Related]
20. MGOS: A resource for studying Magnaporthe grisea and Oryza sativa interactions. Soderlund C; Haller K; Pampanwar V; Ebbole D; Farman M; Orbach MJ; Wang GL; Wing R; Xu JR; Brown D; Mitchell T; Dean R Mol Plant Microbe Interact; 2006 Oct; 19(10):1055-61. PubMed ID: 17022169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]