BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11843495)

  • 1. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro studies of gas bubble formation by mechanical heart valves.
    Biancucci BA; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1999 Mar; 8(2):186-96. PubMed ID: 10224580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber.
    Manning KB; Przybysz TM; Fontaine AA; Tarbell JM; Deutsch S
    ASAIO J; 2005; 51(2):133-8. PubMed ID: 15839436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation and quantification of gas bubble formation on a mechanical heart valve.
    Lin HY; Bianccucci BA; Deutsch S; Fontaine AA; Tarbell JM
    J Biomech Eng; 2000 Aug; 122(4):304-9. PubMed ID: 11036552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial Doppler and acoustic pressure fluctuations for the assessment of cavitation and thromboembolism in patients with mechanical heart valves.
    Rodriguez RA; Ruel M; Labrosse M; Mesana T
    Interact Cardiovasc Thorac Surg; 2008 Apr; 7(2):179-83. PubMed ID: 18056151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves.
    Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves.
    Girod G; Jaussi A; Rosset C; De Werra P; Hirt F; Kappenberger L
    Echocardiography; 2002 Oct; 19(7 Pt 1):531-6. PubMed ID: 12376004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to distinguish between gaseous and solid cerebral emboli in patients with prosthetic heart valves.
    Rodriguez RA; Nathan HJ; Ruel M; Rubens F; Dafoe D; Mesana T
    Eur J Cardiothorac Surg; 2009 Jan; 35(1):89-95. PubMed ID: 18952455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microemboli in aortic valve replacement.
    Nötzold A; Khattab AA; Eggers J
    Expert Rev Cardiovasc Ther; 2006 Nov; 4(6):853-9. PubMed ID: 17173501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of cavitation bubbles in monoleaflet mechanical heart valves.
    Lee H; Tsukiya T; Homma A; Kamimura T; Takewa Y; Tatsumi E; Taenaka Y; Takano H; Kitamura S
    J Artif Organs; 2004; 7(3):121-7. PubMed ID: 15558332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origin of cerebrovascular microemboli associated with prosthetic heart valves.
    Mackay TG; Georgiadis D; Grosset DG; Lees KR; Wheatley DJ
    Neurol Res; 1995 Oct; 17(5):349-52. PubMed ID: 8584125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcranial Doppler detection of microemboli in prosthetic heart valve patients: dependency upon valve type.
    Georgiadis D; Kaps M; Berg J; Mackay TG; Dapper F; Faichney A; Wheatley DJ; Lees KR
    Eur J Cardiothorac Surg; 1996; 10(4):253-7; discussion 257-8. PubMed ID: 8740061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo observation of cavitation on prosthetic heart valves.
    Zapanta CM; Stinebring DR; Sneckenberger DS; Deutsch S; Geselowitz DB; Tarbell JM; Synder AJ; Rosenberg G; Weiss WJ; Pae WE; Pierce WS
    ASAIO J; 1996; 42(5):M550-5. PubMed ID: 8944940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time in vitro observation of cavitation in a prosthetic heart valve.
    Lamson TC; Stinebring DR; Deutsch S; Rosenberg G; Tarbell JM
    ASAIO Trans; 1991; 37(3):M351-3. PubMed ID: 1751182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation phenomenon in monoleaflet mechanical heart valves with electrohydraulic total artificial heart.
    Lee H; Taenaka Y; Kitamura S
    Int J Artif Organs; 2004 Sep; 27(9):779-86. PubMed ID: 15521218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.