BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11844751)

  • 1. The flavoprotein MrsD catalyzes the oxidative decarboxylation reaction involved in formation of the peptidoglycan biosynthesis inhibitor mersacidin.
    Majer F; Schmid DG; Altena K; Bierbaum G; Kupke T
    J Bacteriol; 2002 Mar; 184(5):1234-43. PubMed ID: 11844751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate.
    Blaesse M; Kupke T; Huber R; Steinbacher S
    EMBO J; 2000 Dec; 19(23):6299-310. PubMed ID: 11101502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II.
    Brötz H; Bierbaum G; Leopold K; Reynolds PE; Sahl HG
    Antimicrob Agents Chemother; 1998 Jan; 42(1):154-60. PubMed ID: 9449277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lantibiotic biosynthesis: interactions between prelacticin 481 and its putative modification enzyme, LctM.
    Uguen P; Le Pennec JP; Dufour A
    J Bacteriol; 2000 Sep; 182(18):5262-6. PubMed ID: 10960114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry.
    Oman TJ; Lupoli TJ; Wang TS; Kahne D; Walker S; van der Donk WA
    J Am Chem Soc; 2011 Nov; 133(44):17544-7. PubMed ID: 22003874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure and mechanism of an unusual oxidoreductase, GilR, involved in gilvocarcin V biosynthesis.
    Noinaj N; Bosserman MA; Schickli MA; Piszczek G; Kharel MK; Pahari P; Buchanan SK; Rohr J
    J Biol Chem; 2011 Jul; 286(26):23533-43. PubMed ID: 21561854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of the AviMeCys-containing D-ring of mersacidin.
    Carrillo AK; VanNieuwenhze MS
    Org Lett; 2012 Feb; 14(4):1034-7. PubMed ID: 22296295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Use of the Uniquely Small Ring A of Mersacidin Generates the Smallest Ribosomally Produced Lanthipeptide.
    Viel JH; Kuipers OP
    ACS Synth Biol; 2022 Sep; 11(9):3078-3087. PubMed ID: 36065523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational Studies of the Mersacidin Leader Reveal the Function of Its Unique Two-Step Leader Processing Mechanism.
    Viel JH; Kuipers OP
    ACS Synth Biol; 2022 May; 11(5):1949-1957. PubMed ID: 35504017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Leader Processing Shows That Partially Processed Mersacidin Is Activated by AprE After Export.
    Viel JH; van Tilburg AY; Kuipers OP
    Front Microbiol; 2021; 12():765659. PubMed ID: 34777321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous Expression of Mersacidin in
    Viel JH; Jaarsma AH; Kuipers OP
    ACS Synth Biol; 2021 Mar; 10(3):600-608. PubMed ID: 33689311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N5 Is the New C4a: Biochemical Functionalization of Reduced Flavins at the N5 Position.
    Beaupre BA; Moran GR
    Front Mol Biosci; 2020; 7():598912. PubMed ID: 33195440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Amphipathic Alpha-Helix Guides Maturation of the Ribosomally-Synthesized Lipolanthines.
    Wiebach V; Mainz A; Schnegotzki R; Siegert MJ; Hügelland M; Pliszka N; Süssmuth RD
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16777-16785. PubMed ID: 32533616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family.
    Walker MC; Eslami SM; Hetrick KJ; Ackenhusen SE; Mitchell DA; van der Donk WA
    BMC Genomics; 2020 Jun; 21(1):387. PubMed ID: 32493223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of the cypemycin decarboxylase CypD.
    Ding W; Mo T; Mandalapu D; Zhang Q
    Synth Syst Biotechnol; 2018 Sep; 3(3):159-162. PubMed ID: 30345401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes.
    Repka LM; Chekan JR; Nair SK; van der Donk WA
    Chem Rev; 2017 Apr; 117(8):5457-5520. PubMed ID: 28135077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis.
    Ortega MA; Cogan DP; Mukherjee S; Garg N; Li B; Thibodeaux GN; Maffioli SI; Donadio S; Sosio M; Escano J; Smith L; Nair SK; van der Donk WA
    ACS Chem Biol; 2017 Feb; 12(2):548-557. PubMed ID: 28032983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides.
    Truman AW
    Beilstein J Org Chem; 2016; 12():1250-68. PubMed ID: 27559376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mechanism of lanthipeptide biosynthetic enzymes.
    van der Donk WA; Nair SK
    Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life.
    Thole S; Kalhoefer D; Voget S; Berger M; Engelhardt T; Liesegang H; Wollherr A; Kjelleberg S; Daniel R; Simon M; Thomas T; Brinkhoff T
    ISME J; 2012 Dec; 6(12):2229-44. PubMed ID: 22717884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.