These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11844801)

  • 41. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme.
    Changela A; Ho CK; Martins A; Shuman S; Mondragón A
    EMBO J; 2001 May; 20(10):2575-86. PubMed ID: 11350947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).
    Zhu H; Shuman S
    J Biol Chem; 2005 Apr; 280(13):12137-44. PubMed ID: 15671015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate.
    Bougie I; Bisaillon M
    Biochem J; 2006 Sep; 398(3):557-67. PubMed ID: 16761952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication.
    Gross CH; Shuman S
    J Virol; 1998 Jun; 72(6):4729-36. PubMed ID: 9573237
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis.
    Abdelghany HM; Bailey S; Blackburn GM; Rafferty JB; McLennan AG
    J Biol Chem; 2003 Feb; 278(7):4435-9. PubMed ID: 12475970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny.
    Ho CK; Shuman S
    J Biol Chem; 2001 Dec; 276(49):46182-6. PubMed ID: 11553645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Saccharomyces cerevisiae RNA 5'-triphosphatase related to mRNA capping enzyme.
    Rodriguez CR; Takagi T; Cho EJ; Buratowski S
    Nucleic Acids Res; 1999 May; 27(10):2181-8. PubMed ID: 10219091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK; Ho CK; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(32):29454-62. PubMed ID: 12766156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi.
    Hausmann S; Vivarès CP; Shuman S
    J Biol Chem; 2002 Jan; 277(1):96-103. PubMed ID: 11687593
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of baculovirus RNA triphosphatase complexed with phosphate.
    Changela A; Martins A; Shuman S; Mondragón A
    J Biol Chem; 2005 May; 280(18):17848-56. PubMed ID: 15713658
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation of the catalytic site within the ATP-grasp domain of Clostridium symbiosum pyruvate phosphate dikinase.
    Ye D; Wei M; McGuire M; Huang K; Kapadia G; Herzberg O; Martin BM; Dunaway-Mariano D
    J Biol Chem; 2001 Oct; 276(40):37630-9. PubMed ID: 11468288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure and biochemical analyses reveal that the Arabidopsis triphosphate tunnel metalloenzyme AtTTM3 is a tripolyphosphatase involved in root development.
    Moeder W; Garcia-Petit C; Ung H; Fucile G; Samuel MA; Christendat D; Yoshioka K
    Plant J; 2013 Nov; 76(4):615-26. PubMed ID: 24004165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis.
    Ishii S; Mizuguchi H; Nishino J; Hayashi H; Kagamiyama H
    J Biochem; 1996 Aug; 120(2):369-76. PubMed ID: 8889823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A yeast-like mRNA capping apparatus in Plasmodium falciparum.
    Ho CK; Shuman S
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3050-5. PubMed ID: 11248030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active site properties of monomeric triosephosphate isomerase (monoTIM) as deduced from mutational and structural studies.
    Schliebs W; Thanki N; Eritja R; Wierenga R
    Protein Sci; 1996 Feb; 5(2):229-39. PubMed ID: 8745400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Defining the active site of Schizosaccharomyces pombe C-terminal domain phosphatase Fcp1.
    Hausmann S; Shuman S
    J Biol Chem; 2003 Apr; 278(16):13627-32. PubMed ID: 12556522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.