These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 11844802)

  • 1. The RAVE complex is essential for stable assembly of the yeast V-ATPase.
    Smardon AM; Tarsio M; Kane PM
    J Biol Chem; 2002 Apr; 277(16):13831-9. PubMed ID: 11844802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between the yeast RAVE complex and Vph1-containing V
    Jaskolka MC; Kane PM
    J Biol Chem; 2020 Feb; 295(8):2259-2269. PubMed ID: 31941791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase.
    Smardon AM; Kane PM
    J Biol Chem; 2007 Sep; 282(36):26185-94. PubMed ID: 17623654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex.
    Smardon AM; Nasab ND; Tarsio M; Diakov TT; Kane PM
    J Biol Chem; 2015 Nov; 290(46):27511-23. PubMed ID: 26405040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAVE and Rabconnectin-3 Complexes as Signal Dependent Regulators of Organelle Acidification.
    Jaskolka MC; Winkley SR; Kane PM
    Front Cell Dev Biol; 2021; 9():698190. PubMed ID: 34249946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining steps in RAVE-catalyzed V-ATPase assembly using purified RAVE and V-ATPase subcomplexes.
    Jaskolka MC; Tarsio M; Smardon AM; Khan MM; Kane PM
    J Biol Chem; 2021; 296():100703. PubMed ID: 33895134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly.
    Chan CY; Parra KJ
    J Biol Chem; 2014 Jul; 289(28):19448-57. PubMed ID: 24860096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skp1p regulates Soi3p/Rav1p association with endosomal membranes but is not required for vacuolar ATPase assembly.
    Brace EJ; Parkinson LP; Fuller RS
    Eukaryot Cell; 2006 Dec; 5(12):2104-13. PubMed ID: 17041187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and regulation of the yeast vacuolar H+-ATPase.
    Kane PM; Smardon AM
    J Bioenerg Biomembr; 2003 Aug; 35(4):313-21. PubMed ID: 14635777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly.
    Seol JH; Shevchenko A; Shevchenko A; Deshaies RJ
    Nat Cell Biol; 2001 Apr; 3(4):384-91. PubMed ID: 11283612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and regulation of the yeast vacuolar H(+)-ATPase.
    Kane PM; Parra KJ
    J Exp Biol; 2000 Jan; 203(Pt 1):81-7. PubMed ID: 10600676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane.
    Zhang Z; Wang X; Gao T; Gu C; Sun F; Yu L; Hu J
    J Bioenerg Biomembr; 2017 Oct; 49(5):347-355. PubMed ID: 28643238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting reversible disassembly as a mechanism of controlling V-ATPase activity.
    Kane PM
    Curr Protein Pept Sci; 2012 Mar; 13(2):117-23. PubMed ID: 22044153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast.
    Smardon AM; Diab HI; Tarsio M; Diakov TT; Nasab ND; West RW; Kane PM
    Mol Biol Cell; 2014 Feb; 25(3):356-67. PubMed ID: 24307682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective assembly of a hybrid vacuolar H(+)-ATPase containing the mouse testis-specific E1 isoform and yeast subunits.
    Hayashi K; Sun-Wada GH; Wada Y; Nakanishi-Matsui M; Futai M
    Biochim Biophys Acta; 2008 Oct; 1777(10):1370-7. PubMed ID: 18662668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells.
    Chan CY; Dominguez D; Parra KJ
    J Biol Chem; 2016 Jul; 291(30):15820-9. PubMed ID: 27226568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early steps in assembly of the yeast vacuolar H+-ATPase.
    Kane PM; Tarsio M; Liu J
    J Biol Chem; 1999 Jun; 274(24):17275-83. PubMed ID: 10358087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
    Stransky LA; Forgac M
    J Biol Chem; 2015 Nov; 290(45):27360-27369. PubMed ID: 26378229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.
    Parra KJ; Chan CY; Chen J
    Eukaryot Cell; 2014 Jun; 13(6):706-14. PubMed ID: 24706019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.