These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11845283)

  • 81. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment.
    Goldstone AP
    Trends Endocrinol Metab; 2004; 15(1):12-20. PubMed ID: 14693421
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Analysis of candidate imprinted genes in PWS subjects with atypical genetics: a possible inactivating mutation in the SNURF/SNRPN minimal promoter.
    Maina EN; Webb T; Soni S; Whittington J; Boer H; Clarke D; Holland A
    J Hum Genet; 2007; 52(4):297-307. PubMed ID: 17262171
    [TBL] [Abstract][Full Text] [Related]  

  • 83. IPSC Models of Chromosome 15Q Imprinting Disorders: From Disease Modeling to Therapeutic Strategies.
    Germain ND; Levine ES; Chamberlain SJ
    Adv Neurobiol; 2020; 25():55-77. PubMed ID: 32578144
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Incomplete methylation of a germ cell tumor (Seminoma) in a Prader-Willi male.
    Eldar-Geva T; Gross-Tsur V; Hirsch HJ; Altarescu G; Segal R; Zeligson S; Golomb E; Epsztejn-Litman S; Eiges R
    Mol Genet Genomic Med; 2018 Sep; 6(5):811-818. PubMed ID: 30003711
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region.
    Sutcliffe JS; Nakao M; Christian S; Orstavik KH; Tommerup N; Ledbetter DH; Beaudet AL
    Nat Genet; 1994 Sep; 8(1):52-8. PubMed ID: 7987392
    [TBL] [Abstract][Full Text] [Related]  

  • 86. 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders.
    Hogart A; Nagarajan RP; Patzel KA; Yasui DH; Lasalle JM
    Hum Mol Genet; 2007 Mar; 16(6):691-703. PubMed ID: 17339270
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Heterozygous Deletions in MKRN3 Cause Central Precocious Puberty Without Prader-Willi Syndrome.
    Meader BN; Albano A; Sekizkardes H; Delaney A
    J Clin Endocrinol Metab; 2020 Aug; 105(8):2732-9. PubMed ID: 32480405
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mouse imprinting defect mutations that model Angelman syndrome.
    Wu MY; Chen KS; Bressler J; Hou A; Tsai TF; Beaudet AL
    Genesis; 2006 Jan; 44(1):12-22. PubMed ID: 16397868
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Submicroscopic deletion in cousins with Prader-Willi syndrome causes a grandmatrilineal inheritance pattern: effects of imprinting.
    Ming JE; Blagowidow N; Knoll JH; Rollings L; Fortina P; McDonald-McGinn DM; Spinner NB; Zackai EH
    Am J Med Genet; 2000 May; 92(1):19-24. PubMed ID: 10797418
    [TBL] [Abstract][Full Text] [Related]  

  • 90. From Prader-Willi syndrome to psychosis: translating parent-of-origin effects into schizophrenia research.
    Krefft M; Frydecka D; Adamowski T; Misiak B
    Epigenomics; 2014; 6(6):677-88. PubMed ID: 25531260
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A rapid, PCR based test for differential molecular diagnosis of Prader-Willi and Angelman syndromes.
    Chotai KA; Payne SJ
    J Med Genet; 1998 Jun; 35(6):472-5. PubMed ID: 9643288
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome.
    Costa RA; Ferreira IR; Cintra HA; Gomes LHF; Guida LDC
    Front Endocrinol (Lausanne); 2019; 10():864. PubMed ID: 31920975
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty.
    Fountain MD; Tao H; Chen CA; Yin J; Schaaf CP
    Genes Brain Behav; 2017 Jul; 16(6):592-600. PubMed ID: 28296079
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis.
    Heseding HM; Jahn K; Eberlein CK; Wieting J; Maier HB; Proskynitopoulos PJ; Glahn A; Bleich S; Frieling H; Deest M
    Transl Psychiatry; 2022 Jun; 12(1):246. PubMed ID: 35688807
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Conservation of Imprinting and Methylation of
    Li J; Chen W; Li D; Gu S; Liu X; Dong Y; Jin L; Zhang C; Li S
    Animals (Basel); 2021 Jul; 11(7):. PubMed ID: 34359112
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evolution of genomic imprinting with biparental care: implications for Prader-Willi and Angelman syndromes.
    Ubeda F
    PLoS Biol; 2008 Aug; 6(8):e208. PubMed ID: 18752349
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory.
    Salles J; Eddiry S; Lacassagne E; Laurier V; Molinas C; Bieth É; Franchitto N; Salles JP; Tauber M
    Clin Epigenetics; 2021 Aug; 13(1):159. PubMed ID: 34389046
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The mouse pink-eyed dilution gene: association with hypopigmentation in Prader-Willi and Angelman syndromes and with human OCA2.
    Brilliant MH; King R; Francke U; Schuffenhauer S; Meitinger T; Gardner JM; Durham-Pierre D; Nakatsu Y
    Pigment Cell Res; 1994 Dec; 7(6):398-402. PubMed ID: 7761348
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Epigenetic therapy of Prader-Willi syndrome.
    Kim Y; Wang SE; Jiang YH
    Transl Res; 2019 Jun; 208():105-118. PubMed ID: 30904443
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues.
    Chibuk TK; Bischof JM; Wevrick R
    BMC Genet; 2001; 2():22. PubMed ID: 11782285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.