BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11845305)

  • 1. Molecular studies of CFTR interacting proteins.
    Wang S; Li M
    Pflugers Arch; 2001; 443 Suppl 1():S62-4. PubMed ID: 11845305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region.
    Lu NT; Pedersen PL
    Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective formation of PKA/CnA-dependent annexin 2-S100A10/CFTR complex in DeltaF508 cystic fibrosis cells.
    Borthwick LA; Riemen C; Goddard C; Colledge WH; Mehta A; Gerke V; Muimo R
    Cell Signal; 2008 Jun; 20(6):1073-83. PubMed ID: 18346874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM; Quinton PM
    Pflugers Arch; 2003 Jan; 445(4):499-503. PubMed ID: 12548396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM; Quinton PM
    JOP; 2001 Jul; 2(4 Suppl):212-8. PubMed ID: 11875262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis.
    Cheung KH; Leung CT; Leung GP; Wong PY
    Biol Reprod; 2003 May; 68(5):1505-10. PubMed ID: 12606488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of the cAMP activation of chloride transport by CFTR channel and the mechanism of potentiators.
    Moran O
    J Theor Biol; 2010 Jan; 262(1):73-9. PubMed ID: 19766125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P
    Exp Physiol; 2006 Jan; 91(1):123-9. PubMed ID: 16157656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E
    Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.
    Ramjeesingh M; Ugwu F; Stratford FL; Huan LJ; Li C; Bear CE
    Biochem J; 2008 Jun; 412(2):315-21. PubMed ID: 18241200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NHE3 inhibits PKA-dependent functional expression of CFTR by NHERF2 PDZ interactions.
    Favia M; Fanelli T; Bagorda A; Di Sole F; Reshkin SJ; Suh PG; Guerra L; Casavola V
    Biochem Biophys Res Commun; 2006 Aug; 347(2):452-9. PubMed ID: 16824484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of absorption by phosphorylation of CFTR.
    Quinton PM; Reddy MM
    Jpn J Physiol; 1994; 44 Suppl 2():S207-13. PubMed ID: 7538608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis.
    Sugita M; Kongo H; Shiba Y
    Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of snare proteins in CFTR and ENaC trafficking.
    Peters KW; Qi J; Johnson JP; Watkins SC; Frizzell RA
    Pflugers Arch; 2001; 443 Suppl 1():S65-9. PubMed ID: 11845306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic fibrosis and CFTR.
    Greger R; Schreiber R; Mall M; Wissner A; Hopf A; Briel M; Bleich M; Warth R; Kunzelmann K
    Pflugers Arch; 2001; 443 Suppl 1():S3-7. PubMed ID: 11845294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis.
    Marcet B; Boeynaems JM
    Pharmacol Ther; 2006 Dec; 112(3):719-32. PubMed ID: 16828872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.