These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 11845308)

  • 1. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-independent regulation of CFTR by the actin cytoskeleton.
    Prat AG; Xiao YF; Ausiello DA; Cantiello HF
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin filament organization is required for proper cAMP-dependent activation of CFTR.
    Prat AG; Cunningham CC; Jackson GR; Borkan SC; Wang Y; Ausiello DA; Cantiello HF
    Am J Physiol; 1999 Dec; 277(6):C1160-9. PubMed ID: 10600767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Exp Physiol; 1996 May; 81(3):505-14. PubMed ID: 8737083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective formation of PKA/CnA-dependent annexin 2-S100A10/CFTR complex in DeltaF508 cystic fibrosis cells.
    Borthwick LA; Riemen C; Goddard C; Colledge WH; Mehta A; Gerke V; Muimo R
    Cell Signal; 2008 Jun; 20(6):1073-83. PubMed ID: 18346874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular studies of CFTR interacting proteins.
    Wang S; Li M
    Pflugers Arch; 2001; 443 Suppl 1():S62-4. PubMed ID: 11845305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual regulation of cardiac Na+-K+ pumps and CFTR Cl- channels by protein kinases A and C.
    Erlenkamp S; Glitsch HG; Kockskämper J
    Pflugers Arch; 2002 May; 444(1-2):251-62. PubMed ID: 11976939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological and signaling properties of endogenous P2Y1 receptors in cystic fibrosis transmembrane conductance regulator-expressing Chinese hamster ovary cells.
    Marcet B; Chappe V; Delmas P; Verrier B
    J Pharmacol Exp Ther; 2004 May; 309(2):533-9. PubMed ID: 14742736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts.
    Fischer H; Illek B; Machen TE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Ca(2+)-activated chloride channels by cAMP and CFTR in parotid acinar cells.
    Perez-Cornejo P; Arreola J
    Biochem Biophys Res Commun; 2004 Apr; 316(3):612-7. PubMed ID: 15033444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM; Quinton PM
    Pflugers Arch; 2003 Jan; 445(4):499-503. PubMed ID: 12548396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis.
    Cheung KH; Leung CT; Leung GP; Wong PY
    Biol Reprod; 2003 May; 68(5):1505-10. PubMed ID: 12606488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.
    Pal Sharma C; Goldmann WH
    Cell Biol Int; 2004; 28(12):935-41. PubMed ID: 15566962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM; Quinton PM
    JOP; 2001 Jul; 2(4 Suppl):212-8. PubMed ID: 11875262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network.
    Lipecka J; Norez C; Bensalem N; Baudouin-Legros M; Planelles G; Becq F; Edelman A; Davezac N
    J Pharmacol Exp Ther; 2006 May; 317(2):500-5. PubMed ID: 16424149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis.
    Sugita M; Kongo H; Shiba Y
    Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion.
    Palmer ML; Lee SY; Carlson D; Fahrenkrug S; O'Grady SM
    J Cell Physiol; 2006 Mar; 206(3):759-70. PubMed ID: 16245306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.