BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11846915)

  • 1. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.
    Piechnik SK; Czosnyka M; Richards HK; Whitfield PC; Pickard JD
    Neurosurgery; 2001 Nov; 49(5):1214-22; discussion 1222-3. PubMed ID: 11846915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracranial venous pressures, hydrocephalus and effects of cerebrospinal fluid shunts.
    Andeweg J
    Childs Nerv Syst; 1989 Oct; 5(5):318-23. PubMed ID: 2805004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship of intracranial venous pressure to hydrocephalus.
    Portnoy HD; Branch C; Castro ME
    Childs Nerv Syst; 1994 Jan; 10(1):29-35. PubMed ID: 8194060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute subdural hematoma from bridging vein rupture: a potential mechanism for growth.
    Miller JD; Nader R
    J Neurosurg; 2014 Jun; 120(6):1378-84. PubMed ID: 24313607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Intracranial Pressure Attenuates the Pulsating Component of Cerebral Venous Outflow.
    Unnerbäck M; Ottesen JT; Reinstrup P
    Neurocrit Care; 2019 Oct; 31(2):273-279. PubMed ID: 31240621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral venous steal: blood flow diversion with increased tissue pressure.
    Pranevicius M; Pranevicius O
    Neurosurgery; 2002 Nov; 51(5):1267-73; discussion 1273-4. PubMed ID: 12383372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The venous hypothesis of hydrocephalus.
    Williams H
    Med Hypotheses; 2008; 70(4):743-7. PubMed ID: 17919832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrospinal fluid flow waveforms: effect of altered cranial venous outflow. A phase-contrast MR flow imaging study.
    Bhadelia RA; Bogdan AR; Wolpert SM
    Neuroradiology; 1998 May; 40(5):283-92. PubMed ID: 9638668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitation of cerebral blood flow by increased venous outflow resistance in elevated ICP.
    Zadka Y; Rosenthal G; Doron O; Barnea O
    J Appl Physiol (1985); 2024 Jan; 136(1):224-232. PubMed ID: 38059286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology.
    Andeweg J
    Neuroradiology; 1996 Oct; 38(7):621-8. PubMed ID: 8912316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced global mathematical model for studying cerebral venous blood flow.
    Müller LO; Toro EF
    J Biomech; 2014 Oct; 47(13):3361-72. PubMed ID: 25169660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral arterial and venous flow-velocity measurements in post-haemorrhagic ventricular dilatation and hydrocephalus.
    Quinn MW; Ando Y; Levene MI
    Dev Med Child Neurol; 1992 Oct; 34(10):863-9. PubMed ID: 1397727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion.
    Barami K; Sood S
    Childs Nerv Syst; 2016 Apr; 32(4):599-607. PubMed ID: 26767844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperemic hydrocephalus: a new form of childhood hydrocephalus analogous to hyperemic intracranial hypertension in adults.
    Bateman G
    J Neurosurg Pediatr; 2010 Jan; 5(1):20-6. PubMed ID: 20043733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of arterial and venous pressure for volume regulation of an organ enclosed in a rigid compartment with application to the injured brain.
    Kongstad L; Grände PO
    Acta Anaesthesiol Scand; 1999 May; 43(5):501-8. PubMed ID: 10341996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema.
    Doron O; Zadka Y; Barnea O; Rosenthal G
    Fluids Barriers CNS; 2021 Sep; 18(1):42. PubMed ID: 34530863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new hemodynamic model for the study of cerebral venous outflow.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Zamboni P; Ursino M
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H217-31. PubMed ID: 25398980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.