BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11847193)

  • 21. Angiotensin II relaxes microvessels via the AT(2) receptor and Ca(2+)-activated K(+) (BK(Ca)) channels.
    Dimitropoulou C; White RE; Fuchs L; Zhang H; Catravas JD; Carrier GO
    Hypertension; 2001 Feb; 37(2):301-7. PubMed ID: 11230289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of CB1 cannabinoid receptors in the EDHF-dependent vasorelaxation in rabbits.
    Niederhoffer N; Szabo B
    Br J Pharmacol; 1999 Mar; 126(6):1383-6. PubMed ID: 10217532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct vasodilative effect of FK506 on porcine mesenteric artery in small bowel transplantation.
    Akiyoshi J; Ieiri S; Nakatsuji T; Taguchi T
    J Pediatr Surg; 2009 Dec; 44(12):2322-6. PubMed ID: 20006018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cannabinoid CB(1) receptor activation modulates spontaneous contractile activity in mouse ileal longitudinal muscle.
    Baldassano S; Serio R; Mule' F
    Eur J Pharmacol; 2008 Mar; 582(1-3):132-8. PubMed ID: 18234188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-Arachidonylglyceryl ether and abnormal cannabidiol-induced vascular smooth muscle relaxation in rabbit pulmonary arteries via receptor-pertussis toxin sensitive G proteins-ERK1/2 signaling.
    Su JY; Vo AC
    Eur J Pharmacol; 2007 Mar; 559(2-3):189-95. PubMed ID: 17292352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inverse agonist properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4-methoxyphenyl)-1H-pyrazole-3-carboxyl ic acid phenylamide (CP-272871) for the CB(1) cannabinoid receptor.
    Meschler JP; Kraichely DM; Wilken GH; Howlett AC
    Biochem Pharmacol; 2000 Nov; 60(9):1315-23. PubMed ID: 11008125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rotundifolone-induced relaxation is mediated by BK(Ca) channel activation and Ca(v) channel inactivation.
    Silva DF; Araújo IG; Albuquerque JG; Porto DL; Dias KL; Cavalcante KV; Veras RC; Nunes XP; Barbosa-Filho JM; Araújo DA; Cruz JS; Correia NA; De Medeiros IA
    Basic Clin Pharmacol Toxicol; 2011 Dec; 109(6):465-75. PubMed ID: 21726408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery.
    Fujiwara T; Angus JA
    Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of adenosine-induced coronary vasodilation by block of large-conductance Ca(2+)-activated K+ channels.
    Cabell F; Weiss DS; Price JM
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1455-60. PubMed ID: 7943391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles.
    McGuire JJ; Hollenberg MD; Andrade-Gordon P; Triggle CR
    Br J Pharmacol; 2002 Jan; 135(1):155-69. PubMed ID: 11786491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelium and cannabinoid receptor involvement in levcromakalim vasorelaxation.
    White R; Hiley CR
    Eur J Pharmacol; 1997 Nov; 339(2-3):157-60. PubMed ID: 9473130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of K(+)-channel blockers on ACh-induced hyperpolarization and relaxation in mesenteric arteries.
    Chen G; Cheung DW
    Am J Physiol; 1997 May; 272(5 Pt 2):H2306-12. PubMed ID: 9176299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide inhibits alpha2-adrenoceptor-mediated endothelium-dependent vasodilation.
    Thorin E; Huang PL; Fishman MC; Bevan JA
    Circ Res; 1998 Jun; 82(12):1323-9. PubMed ID: 9648729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide.
    Khan SA; Mathews WR; Meisheri KD
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1327-35. PubMed ID: 7505330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Attenuation by 4-aminopyridine of delayed vasorelaxation by troglitazone.
    Peuler JD; Warfield RK; Phelps LE
    Metabolism; 2004 Feb; 53(2):147-52. PubMed ID: 14767864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries.
    Adaramoye OA; Medeiros IA
    J Smooth Muscle Res; 2009 Feb; 45(1):39-53. PubMed ID: 19377272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase.
    Gaete PS; Lillo MA; Ardiles NM; Pérez FR; Figueroa XF
    Free Radic Biol Med; 2012 Mar; 52(5):860-70. PubMed ID: 22210378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Androgen deprivation facilitates acetylcholine-induced relaxation by superoxide anion generation.
    Ferrer M; Tejera N; Marín J; Balfagón G
    Clin Sci (Lond); 1999 Dec; 97(6):625-31. PubMed ID: 10585889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of two distinct vasodilator pathways activated by ATP in the mesenteric bed of the rat.
    Stanford SJ; Gitlin JM; Mitchell JA
    Br J Pharmacol; 2001 Jul; 133(6):825-32. PubMed ID: 11454655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels.
    Bolz SS; de Wit C; Pohl U
    Br J Pharmacol; 1999 Sep; 128(1):124-34. PubMed ID: 10498843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.