These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 11847406)

  • 21. Current approaches to experimental bone grafting.
    Lane JM; Sandhu HS
    Orthop Clin North Am; 1987 Apr; 18(2):213-25. PubMed ID: 3550572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
    Ripamonti U; Crooks J; Khoali L; Roden L
    Biomaterials; 2009 Mar; 30(7):1428-39. PubMed ID: 19081131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial.
    Kim CS; Choi SH; Cho KS; Chai JK; Wikesjö UM; Kim CK
    J Clin Periodontol; 2005 Jun; 32(6):583-9. PubMed ID: 15882215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmental bone tissue engineering by seeding osteoblast precursor cells into titanium mesh-coral composite scaffolds.
    Chen F; Feng X; Wu W; Ouyang H; Gao Z; Cheng X; Hou R; Mao T
    Int J Oral Maxillofac Surg; 2007 Sep; 36(9):822-7. PubMed ID: 17804199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic evaluation of the natural coral (Porites spp.) post-implantation in sheep femur.
    Fadilah A; Zuki AB; Loqman MY; Zamri-Saad M; Al-Salihi KA; Norimah Y; Asnah H
    Med J Malaysia; 2004 May; 59 Suppl B():127-8. PubMed ID: 15468851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone graft and bone graft substitutes: a review of current technology and applications.
    Damien CJ; Parsons JR
    J Appl Biomater; 1991; 2(3):187-208. PubMed ID: 10149083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes.
    Bohner M; Baumgart F
    Biomaterials; 2004 Aug; 25(17):3569-82. PubMed ID: 15020131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts.
    Zhou Y; Chen F; Ho ST; Woodruff MA; Lim TM; Hutmacher DW
    Biomaterials; 2007 Feb; 28(5):814-24. PubMed ID: 17045643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Experimental study on bone formation in a denser coral used for repairing cortical defects in dogs].
    Zeng R; Ren C; Li C
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Jan; 32(1):16-8. PubMed ID: 10677937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results].
    Pouliquen JC; Noat M; Verneret C; Guillemin G; Patat JL
    Rev Chir Orthop Reparatrice Appar Mot; 1989; 75(6):360-9. PubMed ID: 2574487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Long-term radiologic evolution of coral implanted in cancellous bone of the lower limb. Madreporic coral versus coral hydroxyapatite].
    de la Caffinière JY; Viehweger E; Worcel A
    Rev Chir Orthop Reparatrice Appar Mot; 1998 Oct; 84(6):501-7. PubMed ID: 9846323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-engineered bone via seeding bone marrow stem cell derived osteoblasts into coral: a rat model.
    Al-Salihi KA
    Med J Malaysia; 2004 May; 59 Suppl B():200-1. PubMed ID: 15468887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteoinductive biomaterials--properties and relevance in bone repair.
    Habibovic P; de Groot K
    J Tissue Eng Regen Med; 2007; 1(1):25-32. PubMed ID: 18038389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resorption kinetics of osseous substitute: natural coral and synthetic hydroxyapatite.
    Braye F; Irigaray JL; Jallot E; Oudadesse H; Weber G; Deschamps N; Deschamps C; Frayssinet P; Tourenne P; Tixier H; Terver S; Lefaivre J; Amirabadi A
    Biomaterials; 1996 Jul; 17(13):1345-50. PubMed ID: 8805984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The preparation of sintered bovine cancellous bone and a study of its mechanical and chemical behavior and biocompatibility].
    Zheng Q; Liu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):95-8. PubMed ID: 15762125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo study of CORAGRAF: a preliminary results.
    Rosdan S; Al-Salihi KA; Suzina AH; Samsudin AR
    Med J Malaysia; 2004 May; 59 Suppl B():111-2. PubMed ID: 15468843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.