These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 11847406)

  • 41. [Reconstruction of the anterior face of the base of the skull using coral grafts].
    Roux FX; Loty B; Brasnu D; Guillemin G
    Neurochirurgie; 1988; 34(2):110-2. PubMed ID: 3405358
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Bone substitutes: Classification and concerns].
    Chai F; Raoul G; Wiss A; Ferri J; Hildebrand HF
    Rev Stomatol Chir Maxillofac; 2011 Sep; 112(4):212-21. PubMed ID: 21783214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds.
    Wu YC; Lee TM; Chiu KH; Shaw SY; Yang CY
    J Mater Sci Mater Med; 2009 Jun; 20(6):1273-80. PubMed ID: 19267261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The biodegradation of hydroxyapatite bone graft substitutes in vivo.
    Rumpel E; Wolf E; Kauschke E; Bienengräber V; Bayerlein T; Gedrange T; Proff P
    Folia Morphol (Warsz); 2006 Feb; 65(1):43-8. PubMed ID: 16783735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Natural coral calcium carbonate as alternative substitute in bone defects of the skull].
    Soost F; Reisshauer B; Herrmann A; Neumann HJ
    Mund Kiefer Gesichtschir; 1998 Mar; 2(2):96-100. PubMed ID: 9567065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Subperiosteal implantation of block coral on the rabbit cavarial bone].
    Miao L; Liu B
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Jul; 32(4):221-3. PubMed ID: 10680509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modelling by percolation theory of the behaviour of natural coral used as bone substitute.
    Barbotteau Y; Irigaray JL; Mathiot JF
    Phys Med Biol; 2003 Nov; 48(21):3611-23. PubMed ID: 14653566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carrier materials for spinal fusion.
    Kwon B; Jenis LG
    Spine J; 2005; 5(6 Suppl):224S-230S. PubMed ID: 16291117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How useful is SBF in predicting in vivo bone bioactivity?
    Kokubo T; Takadama H
    Biomaterials; 2006 May; 27(15):2907-15. PubMed ID: 16448693
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone substitutes: an update.
    Giannoudis PV; Dinopoulos H; Tsiridis E
    Injury; 2005 Nov; 36 Suppl 3():S20-7. PubMed ID: 16188545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Commentary: Deciphering the link between architecture and biological response of a bone graft substitute.
    Bohner M; Loosli Y; Baroud G; Lacroix D
    Acta Biomater; 2011 Feb; 7(2):478-84. PubMed ID: 20709195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone graft substitutes in the upper extremity.
    Geissler WB
    Hand Clin; 2006 Aug; 22(3):329-39, vii. PubMed ID: 16843799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone graft substitutes.
    Laurencin C; Khan Y; El-Amin SF
    Expert Rev Med Devices; 2006 Jan; 3(1):49-57. PubMed ID: 16359252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs.
    Jensen SS; Broggini N; Hjørting-Hansen E; Schenk R; Buser D
    Clin Oral Implants Res; 2006 Jun; 17(3):237-43. PubMed ID: 16672017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes.
    Damien CJ; Ricci JL; Christel P; Alexander H; Patat JL
    Calcif Tissue Int; 1994 Aug; 55(2):151-8. PubMed ID: 7953981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitutes.
    Begley CT; Doherty MJ; Mollan RA; Wilson DJ
    Biomaterials; 1995 Oct; 16(15):1181-5. PubMed ID: 8562796
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial.
    Cordaro L; Bosshardt DD; Palattella P; Rao W; Serino G; Chiapasco M
    Clin Oral Implants Res; 2008 Aug; 19(8):796-803. PubMed ID: 18705811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anchoring dental implant in tissue-engineered bone using composite scaffold: a preliminary study in nude mouse model.
    Chen F; Ouyang H; Feng X; Gao Z; Yang Y; Zou X; Liu T; Zhao G; Mao T
    J Oral Maxillofac Surg; 2005 May; 63(5):586-91. PubMed ID: 15883930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.