These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11848389)

  • 1. Predictive rheological models for the consolidation behaviour of articular cartilage under static loading.
    Nguyen T; Oloyede A
    Proc Inst Mech Eng H; 2001; 215(6):565-77. PubMed ID: 11848389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load.
    Oloyede A; Broom ND
    Connect Tissue Res; 1994; 31(1):75-86. PubMed ID: 15609624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consolidation responses of delipidized articular cartilage.
    Oloyede A; Gudimetla P; Crawford R; Hills BA
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):534-42. PubMed ID: 15182990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physical model for the time-dependent deformation of articular cartilage.
    Oloyede A; Broom ND
    Connect Tissue Res; 1993; 29(4):251-61. PubMed ID: 8269702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical responses of normal and delipidized articular cartilage subjected to varying rates of loading.
    Oloyede A; Gudimetla P; Crawford R; Hills BA
    Connect Tissue Res; 2004; 45(2):86-93. PubMed ID: 15763923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the biomechanical behaviour of articular cartilage in hindfoot joints.
    Venturato C; Pavan PG; Forestiero A; Carniel EL; Natali AN
    Acta Bioeng Biomech; 2014; 16(2):57-65. PubMed ID: 25088586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dramatic influence of loading velocity on the compressive response of articular cartilage.
    Oloyede A; Flachsmann R; Broom ND
    Connect Tissue Res; 1992; 27(4):211-24. PubMed ID: 1576822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage.
    Soltz MA; Ateshian GA
    Ann Biomed Eng; 2000 Feb; 28(2):150-9. PubMed ID: 10710186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time evolution of deformation in a human cartilage under cyclic loading.
    Zhang L; Miramini S; Smith DW; Gardiner BS; Grodzinsky AJ
    Ann Biomed Eng; 2015 May; 43(5):1166-77. PubMed ID: 25331101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the superficial region in determining the dynamic properties of articular cartilage.
    Gannon AR; Nagel T; Kelly DJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1417-25. PubMed ID: 22890186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatio-temporal mechanical environment of healthy and injured human cartilage during sustained activity and its role in cartilage damage.
    Miramini S; Smith DW; Zhang L; Gardiner BS
    J Mech Behav Biomed Mater; 2017 Oct; 74():1-10. PubMed ID: 28521277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The low permeability of healthy meniscus and labrum limit articular cartilage consolidation and maintain fluid load support in the knee and hip.
    Haemer JM; Carter DR; Giori NJ
    J Biomech; 2012 May; 45(8):1450-6. PubMed ID: 22391467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Articular cartilage compression: how microstructural response influences pore pressure in relation to matrix health.
    Fick JM; Thambyah A; Broom ND
    Connect Tissue Res; 2010 Apr; 51(2):132-49. PubMed ID: 20001847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconsideration on the use of elastic models to predict the instantaneous load response of the knee joint.
    Li LP; Gu KB
    Proc Inst Mech Eng H; 2011 Sep; 225(9):888-96. PubMed ID: 22070026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies.
    Sadeghi H; Espino DM; Shepherd DE
    Proc Inst Mech Eng H; 2015 Feb; 229(2):115-23. PubMed ID: 25767149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results.
    Shepherd DE; Seedhom BB
    Proc Inst Mech Eng H; 1997; 211(2):155-65. PubMed ID: 9184456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage.
    Olsen S; Oloyede A; Adam C
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):111-20. PubMed ID: 15203959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited.
    Klika V; Whiteley JP; Brown CP; Gaffney EA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):953-968. PubMed ID: 30729390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.