These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1184871)

  • 1. Lanthanide interactions with nitrotyrosine. A specific binding site for nuclear magnetic resonance shift probes in proteins.
    Marinetti TD; Snyder GH; Sykes BD
    J Am Chem Soc; 1975 Oct; 97(22):6562-70. PubMed ID: 1184871
    [No Abstract]   [Full Text] [Related]  

  • 2. Lanthanide porphyrin complexes. Evaluation of nuclear magnetic resonance dipolar probe and shift reagent capabilities.
    Horrocks WD; Wong CP
    J Am Chem Soc; 1976 Nov; 98(23):7157-62. PubMed ID: 977867
    [No Abstract]   [Full Text] [Related]  

  • 3. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1976 Oct; 15(21):4600-8. PubMed ID: 9977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes.
    Sarna T; Hyde JS; Swartz HM
    Science; 1976 Jun; 192(4244):1132-4. PubMed ID: 179142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor.
    Marinetti TD; Snyder GH; Sykes BD
    Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic peptides. 15. Lanthanide-assisted 13C and 1H NMR analysis of preferred side-chain rotamers in proline-containing cyclic dipeptides.
    Young PE; Madison V; Blout ER
    J Am Chem Soc; 1976 Aug; 98(17):5365-71. PubMed ID: 956561
    [No Abstract]   [Full Text] [Related]  

  • 7. Determination of the solution conformation of adenosein 2':3'-monophosphate by nuclear magnetic resonance with lanthanide probes.
    Fazakerley GV; Wolfe MA
    Eur J Biochem; 1977 Apr; 74(2):337-41. PubMed ID: 192552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the conformation of the polar head groups of phosphatidylcholine on its packing in bilayers. Nuclear magnetic resonance studies on the effect of the binding of lanthanide ions.
    Lichtenberg D; Amselem S; Tamir I
    Biochemistry; 1979 Sep; 18(19):4169-72. PubMed ID: 486415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanide shift reagents.
    Geraldes CF
    Methods Enzymol; 1993; 227():43-78. PubMed ID: 8255231
    [No Abstract]   [Full Text] [Related]  

  • 10. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual assignments of the methyl resonances in the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor.
    Wüthrich K; Wagner G; Richarz R; Perkins SJ
    Biochemistry; 1978 Jun; 17(12):2253-63. PubMed ID: 307961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The simultaneous binding of lanthanide and N-acetylglucosamine inhibitors to hen egg-white lysozyme in solution by 1H and 13C nuclear magnetic resonance.
    Perkins SJ; Johnson LN; Phillips DC; Dwek RA
    Biochem J; 1981 Feb; 193(2):573-88. PubMed ID: 7305947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the coulombic interactions of the lanthanide series to identify two classes of Ca2+ binding sites in mitochondria.
    Tew WP
    Biochem Biophys Res Commun; 1977 Sep; 78(2):624-30. PubMed ID: 907701
    [No Abstract]   [Full Text] [Related]  

  • 14. [13C-nuclear magnetic resonance of nitro compounds and triazenes produced by decomposition of trisubstituted nitrosoureas].
    Sueyoshi S; Tanno M
    Eisei Shikenjo Hokoku; 1984; (102):108-12. PubMed ID: 6532492
    [No Abstract]   [Full Text] [Related]  

  • 15. Ion-binding to phospholipids. Interaction of calcium and lanthanide ions with phosphatidylcholine (lecithin).
    Hauser H; Phillips MC; Levine BA; Williams RJ
    Eur J Biochem; 1975 Oct; 58(1):133-44. PubMed ID: 241630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide torsional flexibility in solution and the use of the lanthanides as nuclear-magnetic-resonance conformation probes. The case of adenosine 5'-monophosphate.
    Geraldes CF; Williams RJ
    Eur J Biochem; 1978 Apr; 85(2):463-70. PubMed ID: 648530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural investigations of natural products by newer methods of NMR spectroscopy.
    Highet RJ; Sokoloski EA
    Fortschr Chem Org Naturst; 1975; 32():119-66. PubMed ID: 1100498
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium binding proteins: optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin.
    Corson DC; Williams TC; Sykes BD
    Biochemistry; 1983 Dec; 22(25):5882-9. PubMed ID: 6661415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-ion binding to parvalbumin. A 113Cd-n.m.r. study of the binding of different lanthanide ions.
    Drakenberg T; Swärd M; Cavé A; Parello J
    Biochem J; 1985 May; 227(3):711-7. PubMed ID: 4004793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of a strong binding site for lanthanides at the N-terminus of peptides and ribonuclease A.
    Bradbury JH; Howell JR; Johnson RN; Warren B
    Eur J Biochem; 1978 Mar; 84(2):503-11. PubMed ID: 25182
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.