These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 11849303)

  • 1. Alpha-adrenoreceptor activation modulates swimming via glycinergic and GABAergic inhibitory pathways in Xenopus laevis tadpoles.
    Merrywest SD; Fischer H; Sillar KT
    Eur J Neurosci; 2002 Jan; 15(2):375-83. PubMed ID: 11849303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.
    Reith CA; Sillar KT
    J Neurophysiol; 1999 Dec; 82(6):3175-87. PubMed ID: 10601451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metamodulation of a spinal locomotor network by nitric oxide.
    McLean DL; Sillar KT
    J Neurosci; 2004 Oct; 24(43):9561-71. PubMed ID: 15509743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles.
    Perrins R; Walford A; Roberts A
    J Neurosci; 2002 May; 22(10):4229-40. PubMed ID: 12019340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA and glycine have different effects on monaural response properties in the dorsal nucleus of the lateral lemniscus of the mustache bat.
    Yang L; Pollak GD
    J Neurophysiol; 1994 Jun; 71(6):2014-24. PubMed ID: 7931499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission.
    Chapman RJ; Issberner JP; Sillar KT
    Eur J Neurosci; 2008 Sep; 28(5):903-13. PubMed ID: 18691329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS
    J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.
    McLean DL; Sillar KT
    J Neurosci; 2002 May; 22(10):4175-84. PubMed ID: 12019335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of GABAergic and glycinergic inhibition on binaural processing in the dorsal nucleus of the lateral lemniscus of the mustache bat.
    Yang L; Pollak GD
    J Neurophysiol; 1994 Jun; 71(6):1999-2013. PubMed ID: 7931498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus.
    Davis KA; Young ED
    J Neurophysiol; 2000 Feb; 83(2):926-40. PubMed ID: 10669505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
    Schneider SP; Fyffe RE
    J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycinergic inhibition in thalamus revealed by synaptic receptor blockade.
    Ghavanini AA; Mathers DA; Puil E
    Neuropharmacology; 2005 Sep; 49(3):338-49. PubMed ID: 15993440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.