These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11849362)

  • 1. Effects of temperature, pH, water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710.
    Sparringa RA; Kendall M; Westby A; Owens JD
    J Appl Microbiol; 2002; 92(2):329-37. PubMed ID: 11849362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucosamine content of tempe mould, Rhizopus oligosporus.
    Sparringa RA; Owens JD
    Int J Food Microbiol; 1999 Mar; 47(1-2):153-7. PubMed ID: 10357284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting production of mold mycelium and protein in synthetic media.
    Graham DC; Steinkraus KH; Hackler LR
    Appl Environ Microbiol; 1976 Sep; 32(3):381-7. PubMed ID: 10836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of proteases by Rhizopus oligosporus IHS13 in low-cost medium by solid-state fermentation.
    Haq IU; Mukhtar H
    J Basic Microbiol; 2004; 44(4):280-7. PubMed ID: 15266600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperellum.
    Begoude BA; Lahlali R; Friel D; Tondje PR; Jijakli MH
    J Appl Microbiol; 2007 Oct; 103(4):845-54. PubMed ID: 17897186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizopus oligosporus and yeast co-cultivation during barley tempeh fermentation--nutritional impact and real-time PCR quantification of fungal growth dynamics.
    Feng XM; Passoth V; Eklund-Jonsson C; Alminger ML; Schnürer J
    Food Microbiol; 2007 Jun; 24(4):393-402. PubMed ID: 17189765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen
    Sephton-Clark PCS; Muñoz JF; Ballou ER; Cuomo CA; Voelz K
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30258038
    [No Abstract]   [Full Text] [Related]  

  • 8. Optimization of Process Variables for Lipase Biosynthesis from Rhizopus oligosporus NRRL 5905 Using Evolutionary Operation Factorial Design Technique.
    Mahapatra P; Kumari A; Garlapati VK; Banerjee R; Nag A
    Indian J Microbiol; 2010 Oct; 50(4):396-403. PubMed ID: 22282606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of water activity, modified atmosphere packaging and storage temperature on spore germination of moulds isolated from prunes.
    el Halouat A; Debevere JM
    Int J Food Microbiol; 1997 Mar; 35(1):41-8. PubMed ID: 9081224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of substrates and storage conditions for preparing and maintaining starter cultures for tempeh fermentation.
    Shambuyi M; Beuchat LR; Hung YC; Nakayama T
    Int J Food Microbiol; 1992; 15(1-2):77-85. PubMed ID: 1622761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.
    Hachmeister KA; Fung DY
    Crit Rev Microbiol; 1993; 19(3):137-88. PubMed ID: 8267862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological characteristics of sporangiospores of the tempe fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group.
    Jennessen J; Schnürer J; Olsson J; Samson RA; Dijksterhuis J
    Mycol Res; 2008 May; 112(Pt 5):547-63. PubMed ID: 18400482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of confocal microscopy to follow the development of penetrative hyphae during growth of Rhizopus oligosporus in an artificial solid-state fermentation system.
    Nopharatana M; Mitchell DA; Howes T
    Biotechnol Bioeng; 2003 Feb; 81(4):438-47. PubMed ID: 12491529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direction of hyphal growth: a relevant parameter in the development of filamentous fungi.
    Molin P; Gervais P; Lemière JP; Davet T
    Res Microbiol; 1992 Oct; 143(8):777-84. PubMed ID: 1298030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the effect of temperature, water activity and carbon dioxide on the growth of Aspergillus niger and Alternaria alternata isolated from fresh date fruit.
    Belbahi A; Leguerinel I; Méot JM; Loiseau G; Madani K; Bohuon P
    J Appl Microbiol; 2016 Dec; 121(6):1685-1698. PubMed ID: 27626891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive model of the effect of CO2, pH, temperature and NaCl on the growth of Listeria monocytogenes.
    Fernández PS; George SM; Sills CC; Peck MW
    Int J Food Microbiol; 1997 Jun; 37(1):37-45. PubMed ID: 9237120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of bongkrek acid and toxoflavin production in tempe bongkrek containing Pseudomonas cocovenenans.
    Buckle KA; Kartadarma EK
    J Appl Bacteriol; 1990 Jun; 68(6):571-6. PubMed ID: 2391293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of culture medium and carbon dioxide concentration on growth of anaerobic bacteria and medium pH.
    Jansen JE; Bremmelgaard A
    Acta Pathol Microbiol Immunol Scand B; 1986 Oct; 94(5):319-23. PubMed ID: 3098041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Rhizopus oligosporus to temporal temperature profiles in a model solid-state fermentation system.
    Ikasari L; Mitchell DA; Stuart DM
    Biotechnol Bioeng; 1999 Sep; 64(6):722-8. PubMed ID: 10417222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive modelling of Escherichia coli O157:H7: inclusion of carbon dioxide as a fourth factor in a pre-existing model.
    Sutherland JP; Bayliss AJ; Braxton DS; Beaumont AL
    Int J Food Microbiol; 1997 Jul; 37(2-3):113-20. PubMed ID: 9310845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.