These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11849443)

  • 1. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT.
    Ichikawa I; Kuwayama F; Pope JC; Stephens FD; Miyazaki Y
    Kidney Int; 2002 Mar; 61(3):889-98. PubMed ID: 11849443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT.
    Miyazaki Y; Ichikawa I
    Pediatr Int; 2003 Oct; 45(5):598-604. PubMed ID: 14521544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryogenesis of the congenital anomalies of the kidney and the urinary tract.
    Kuwayama F; Miyazaki Y; Ichikawa I
    Nephrol Dial Transplant; 2002; 17 Suppl 9():45-7. PubMed ID: 12386286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Congenital anomalies of the kidney and urinary tract--role of the loss of function mutation in the pluripotent angiotensin type 2 receptor gene.
    Pope JC; Brock JW; Adams MC; Miyazaki Y; Stephens FD; Ichikawa I
    J Urol; 2001 Jan; 165(1):196-202. PubMed ID: 11125405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter.
    Miyazaki Y; Oshima K; Fogo A; Hogan BL; Ichikawa I
    J Clin Invest; 2000 Apr; 105(7):863-73. PubMed ID: 10749566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of Gen1 causes ectopic budding and kidney hypoplasia in mice.
    Li Y; Yu M; Tan L; Xue S; Du X; Wang C; Wu X; Xu H; Shen Q
    Biochem Biophys Res Commun; 2022 Jan; 589():173-179. PubMed ID: 34922199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men.
    Nishimura H; Yerkes E; Hohenfellner K; Miyazaki Y; Ma J; Hunley TE; Yoshida H; Ichiki T; Threadgill D; Phillips JA; Hogan BM; Fogo A; Brock JW; Inagami T; Ichikawa I
    Mol Cell; 1999 Jan; 3(1):1-10. PubMed ID: 10024874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT.
    Pope JC; Brock JW; Adams MC; Stephens FD; Ichikawa I
    J Am Soc Nephrol; 1999 Sep; 10(9):2018-28. PubMed ID: 10477156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis.
    Paces-Fessy M; Fabre M; Lesaulnier C; Cereghini S
    Hum Mol Genet; 2012 Jul; 21(14):3143-55. PubMed ID: 22511595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.
    Motoya T; Ogawa N; Nitta T; Rafiq AM; Jahan E; Furuya M; Matsumoto A; Udagawa J; Otani H
    Congenit Anom (Kyoto); 2016 May; 56(3):127-34. PubMed ID: 26710751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT).
    Renkema KY; Winyard PJ; Skovorodkin IN; Levtchenko E; Hindryckx A; Jeanpierre C; Weber S; Salomon R; Antignac C; Vainio S; Schedl A; Schaefer F; Knoers NV; Bongers EM;
    Nephrol Dial Transplant; 2011 Dec; 26(12):3843-51. PubMed ID: 22121240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT.
    Kaku Y; Ohmori T; Kudo K; Fujimura S; Suzuki K; Evans SM; Kawakami Y; Nishinakamura R
    J Am Soc Nephrol; 2013 Jul; 24(8):1242-9. PubMed ID: 23641053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A case of right hypodysplastic kidney and ectopic ureter associated with bicornuate uterus in a prepubertal girl.
    Nakamura M; Kanda S; Kajiho Y; Hinata M; Tomonaga K; Fujishiro J; Harita Y
    CEN Case Rep; 2023 Feb; 12(1):122-129. PubMed ID: 36056295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The renin-angiotensin system in the development of the congenital anomalies of the kidney and urinary tract.
    Niimura F; Kon V; Ichikawa I
    Curr Opin Pediatr; 2006 Apr; 18(2):161-6. PubMed ID: 16601496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Congenital anomalies of the kidney and urinary tract: an embryogenetic review.
    dos Santos Junior AC; de Miranda DM; Simões e Silva AC
    Birth Defects Res C Embryo Today; 2014 Dec; 102(4):374-81. PubMed ID: 25420794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal branching morphogenesis: morphogenetic and signaling mechanisms.
    Blake J; Rosenblum ND
    Semin Cell Dev Biol; 2014 Dec; 36():2-12. PubMed ID: 25080023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin type II receptor expression and ureteral budding.
    Oshima K; Miyazaki Y; Brock JW; Adams MC; Ichikawa I; Pope JC
    J Urol; 2001 Nov; 166(5):1848-52. PubMed ID: 11586245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-driven integrative exploration of functional state of ureter tissue affected by CAKUT.
    Jovanovic I; Zivkovic M; Kostic M; Krstic Z; Djuric T; Licastro D; Meroni G; Alavantic D; Stankovic A
    Life Sci; 2018 Nov; 212():1-8. PubMed ID: 30261159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse Models of Congenital Kidney Anomalies.
    Kuure S; Sariola H
    Adv Exp Med Biol; 2020; 1236():109-136. PubMed ID: 32304071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract.
    van der Ven AT; Vivante A; Hildebrandt F
    J Am Soc Nephrol; 2018 Jan; 29(1):36-50. PubMed ID: 29079659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.