BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 11849858)

  • 21. Various types of plaque disruption in culprit coronary artery visualized by optical coherence tomography in a patient with unstable angina.
    Tanimoto T; Imanishi T; Tanaka A; Yamano T; Kitabata H; Takarada S; Kubo T; Nakamura N; Hirata K; Mizukoshi M; Akasaka T
    Circ J; 2009 Jan; 73(1):187-9. PubMed ID: 19001748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound.
    Brezinski ME; Tearney GJ; Weissman NJ; Boppart SA; Bouma BE; Hee MR; Weyman AE; Swanson EA; Southern JF; Fujimoto JG
    Heart; 1997 May; 77(5):397-403. PubMed ID: 9196405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology.
    Rieber J; Meissner O; Babaryka G; Reim S; Oswald M; Koenig A; Schiele TM; Shapiro M; Theisen K; Reiser MF; Klauss V; Hoffmann U
    Coron Artery Dis; 2006 Aug; 17(5):425-30. PubMed ID: 16845250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography.
    Jang IK; Tearney GJ; MacNeill B; Takano M; Moselewski F; Iftima N; Shishkov M; Houser S; Aretz HT; Halpern EF; Bouma BE
    Circulation; 2005 Mar; 111(12):1551-5. PubMed ID: 15781733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal Dysfunction Increases Risk of Adverse Cardiovascular Events in 5-Year Follow-Up Study of Intermediate Coronary Artery Lesions.
    Baruś P; Hunia J; Kaczorowski R; Bednarek A; Ochijewicz D; Gumiężna K; Kołtowski Ł; Kochman J; Grabowski M; Tomaniak M
    Med Sci Monit; 2024 May; 30():e943956. PubMed ID: 38720443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The accuracy of detailed analysis of optical coherence tomography in detection of plaque lipid content: dual-imaging study with optical coherence tomography and near-infrared spectroscopy.
    Kopriva K; Chen Z; Mates M; Holy F; Stekla B; Vesela M; Pudil J; Chval M; Wahle A; Sonka M; Kovarnik T
    Acta Cardiol; 2024 Apr; 79(2):206-214. PubMed ID: 38465606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical significance of microvessels detected by in vivo optical coherence tomography within human atherosclerotic coronary arterial intima: a study with multimodality intravascular imagings.
    Nishida T; Hiro T; Takayama T; Sudo M; Haruta H; Fukamachi D; Hirayama A; Okumura Y
    Heart Vessels; 2021 Jun; 36(6):756-765. PubMed ID: 33403471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors determining the frequency of optical coherence tomography and intravascular ultrasound use in patients treated with percutaneous coronary interventions in recent years: Analysis based on a large national registry.
    Januszek R; Siudak Z; Malinowski KP; Wańha W; Surowiec S; Heba G; Pawlik A; Kameczura T; Wojakowski W; Jaguszewski M; Kołodziej A; Bryniarski L; Bartuś K; Surdacki A; Dobrzycki S; Legutko J; Bartuś S
    Kardiol Pol; 2023; 81(10):969-977. PubMed ID: 37401576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of coronary plaque characteristics between diabetic and non-diabetic subjects: An in vivo optical coherence tomography study.
    Chia S; Raffel OC; Takano M; Tearney GJ; Bouma BE; Jang IK
    Diabetes Res Clin Pract; 2008 Aug; 81(2):155-60. PubMed ID: 18455829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display.
    Li J; Ma T; Jing J; Zhang J; Patel PM; Kirk Shung K; Zhou Q; Chen Z
    J Biomed Opt; 2013 Oct; 18(10):100502. PubMed ID: 24145701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of coronary intima--media thickness by optical coherence tomography: comparison with intravascular ultrasound.
    Kume T; Akasaka T; Kawamoto T; Watanabe N; Toyota E; Neishi Y; Sukmawan R; Sadahira Y; Yoshida K
    Circ J; 2005 Aug; 69(8):903-7. PubMed ID: 16041157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current diagnostic modalities for vulnerable plaque detection.
    Schaar JA; Mastik F; Regar E; den Uil CA; Gijsen FJ; Wentzel JJ; Serruys PW; van der Stehen AF
    Curr Pharm Des; 2007; 13(10):995-1001. PubMed ID: 17430163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency and spatial distribution of thin-cap fibroatheroma assessed by 3-vessel intravascular ultrasound and optical coherence tomography: an ex vivo validation and an initial in vivo feasibility study.
    Kume T; Okura H; Yamada R; Kawamoto T; Watanabe N; Neishi Y; Sadahira Y; Akasaka T; Yoshida K
    Circ J; 2009 Jun; 73(6):1086-91. PubMed ID: 19359816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging.
    Tearney GJ; Waxman S; Shishkov M; Vakoc BJ; Suter MJ; Freilich MI; Desjardins AE; Oh WY; Bartlett LA; Rosenberg M; Bouma BE
    JACC Cardiovasc Imaging; 2008 Nov; 1(6):752-61. PubMed ID: 19356512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the thickness of coronary calcium by 60-MHz intravascular ultrasound: head-to-head comparison with optical frequency domain imaging.
    Oshikiri Y; Ishida M; Sakamoto R; Kimura T; Shimoda Y; Koeda Y; Shimada R; Itoh T; Morino Y
    Int J Cardiovasc Imaging; 2023 Dec; 39(12):2599-2607. PubMed ID: 37776384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angiographically 'silent' plaque in the left main coronary artery detected by intravascular ultrasound.
    Ge J; Liu F; Görge G; Haude M; Baumgart D; Erbel R
    Coron Artery Dis; 1995 Oct; 6(10):805-10. PubMed ID: 8789673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology.
    Bourantas CV; Jaffer FA; Gijsen FJ; van Soest G; Madden SP; Courtney BK; Fard AM; Tenekecioglu E; Zeng Y; van der Steen AFW; Emelianov S; Muller J; Stone PH; Marcu L; Tearney GJ; Serruys PW
    Eur Heart J; 2017 Feb; 38(6):400-412. PubMed ID: 27118197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome.
    Yamagishi M; Terashima M; Awano K; Kijima M; Nakatani S; Daikoku S; Ito K; Yasumura Y; Miyatake K
    J Am Coll Cardiol; 2000 Jan; 35(1):106-11. PubMed ID: 10636267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology.
    Schroeder S; Kuettner A; Leitritz M; Janzen J; Kopp AF; Herdeg C; Heuschmid M; Burgstahler C; Baumbach A; Wehrmann M; Claussen CD
    J Comput Assist Tomogr; 2004; 28(4):449-54. PubMed ID: 15232374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative ex vivo and in vivo comparison of lumen dimensions measured by optical coherence tomography and intravascular ultrasound in human coronary arteries.
    Gonzalo N; Serruys PW; García-García HM; van Soest G; Okamura T; Ligthart J; Knaapen M; Verheye S; Bruining N; Regar E
    Rev Esp Cardiol; 2009 Jun; 62(6):615-24. PubMed ID: 19480757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.