These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A method for estimating free Ca within human red blood cells, with an application to the study of their Ca-dependent K permeability. Simons TJ J Membr Biol; 1982; 66(3):235-47. PubMed ID: 7097754 [TBL] [Abstract][Full Text] [Related]
24. The effects of adriamycin (doxorubicin HCl) on human red blood cells. Shinohara K; Tanaka KR Hemoglobin; 1980; 4(5-6):735-45. PubMed ID: 6254923 [TBL] [Abstract][Full Text] [Related]
25. Calcium-induced transient potassium efflux in human red blood cells. Adorante JS; Macey RI Am J Physiol; 1986 Jan; 250(1 Pt 1):C55-64. PubMed ID: 3079961 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells. Szász I; Sarkadi B; Gárdos G J Membr Biol; 1977 Jun; 35(1):75-93. PubMed ID: 886606 [No Abstract] [Full Text] [Related]
27. The preparation of human red cell ghosts containing calcium buffers. Simons TJ J Physiol; 1976 Mar; 256(1):209-25. PubMed ID: 933031 [TBL] [Abstract][Full Text] [Related]
28. Involvement of a cytoplasmic protein in calcium-dependent potassium efflux in red blood cells. Plishker GA; White PH; Cadman ED Am J Physiol; 1986 Oct; 251(4 Pt 1):C535-40. PubMed ID: 3532815 [TBL] [Abstract][Full Text] [Related]
29. Iodoacetic acid inhibition of calcium-dependent potassium efflux in red blood cells. Plishker GA Am J Physiol; 1985 May; 248(5 Pt 1):C419-24. PubMed ID: 3993768 [TBL] [Abstract][Full Text] [Related]
30. Hemolytic action of potassium salts on dog red blood cells. Parker JC Am J Physiol; 1983 May; 244(5):C313-7. PubMed ID: 6846521 [TBL] [Abstract][Full Text] [Related]
31. Effects of cadmium and zinc on calcium uptake in human red blood cells. Plishker GA Am J Physiol; 1984 Sep; 247(3 Pt 1):C143-9. PubMed ID: 6089571 [TBL] [Abstract][Full Text] [Related]
32. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. Hunter MJ J Physiol; 1971 Oct; 218 Suppl():49P-50P. PubMed ID: 5130630 [No Abstract] [Full Text] [Related]
33. Congenital ion-transport defect in red cells. N Engl J Med; 1968 Mar; 278(11):621. PubMed ID: 5637759 [No Abstract] [Full Text] [Related]
34. Mechanism of various drug effects on the Ca2+-dependent K+-efflux from human red blood cells. Szász I; Gárdos G FEBS Lett; 1974 Aug; 44(2):213-6. PubMed ID: 4153593 [No Abstract] [Full Text] [Related]
35. The role of calcium in the potassium permeability of human erythrocytes. GARDOS G Acta Physiol Acad Sci Hung; 1959; 15(2):121-5. PubMed ID: 13660848 [No Abstract] [Full Text] [Related]
36. Characteristics of doxorubicin transport in human red blood cells. Dalmark M Scand J Clin Lab Invest; 1981 Nov; 41(7):633-9. PubMed ID: 7339865 [TBL] [Abstract][Full Text] [Related]
37. An analysis of the mechanism by which cetiedil inhibits the Gardos phenomenon. Berkowitz LR; Orringer EP Am J Hematol; 1984 Oct; 17(3):217-23. PubMed ID: 6475933 [TBL] [Abstract][Full Text] [Related]
38. The Ca-activated K channel of human red cells: all or none behaviour of the Ca2+-gating mechanism. Lew VL; Muallem S; Seymour CA Cell Calcium; 1983 Dec; 4(5-6):511-7. PubMed ID: 6323012 [No Abstract] [Full Text] [Related]
39. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrhythmic effect. Glynn IM; Warner AE Br J Pharmacol; 1972 Feb; 44(2):271-8. PubMed ID: 4668594 [TBL] [Abstract][Full Text] [Related]
40. The function of calcium in the potassium permeability of human erythrocytes. GARDOS G Biochim Biophys Acta; 1958 Dec; 30(3):653-4. PubMed ID: 13618284 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]