These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11849993)
1. In vitro interaction of eukaryotic elongation factor 2 with synthetic oligoribonucleotide that mimics GTPase domain of rat 28S ribosomal RNA. He WJ; Tang S; Liu WY Int J Biochem Cell Biol; 2002 Mar; 34(3):263-8. PubMed ID: 11849993 [TBL] [Abstract][Full Text] [Related]
2. Eukaryotic elongation factor 2 can bind to the synthetic oligoribonucleotide that mimics sarcin/ricin domain of rat 28S ribosomal RNA. Tang S; He WJ; Xu H; Liu WY; Ruan KC Mol Cell Biochem; 2001 Jul; 223(1-2):117-21. PubMed ID: 11681712 [TBL] [Abstract][Full Text] [Related]
3. Effects of the active aldehyde group generated by RNA N-glycosidase in the sarcin/ricin domain of rat 28S ribosomal RNA on peptide elongation. Xu YZ; Liu WY Biol Chem; 2000 Feb; 381(2):113-9. PubMed ID: 10746742 [TBL] [Abstract][Full Text] [Related]
4. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors. Macbeth MR; Wool IG J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of depurination catalyzed by ricin A-chain on synthetic 32mer and 25mer oligoribonucleotides mimicking the sarcin/ricin domain of the rat 28S rRNA and E. coli 23S rRNA. Tan QQ; Dong DX; Yin XW; Sun J; Ren HJ; Li RX J Biotechnol; 2009 Jan; 139(2):156-62. PubMed ID: 19014981 [TBL] [Abstract][Full Text] [Related]
6. The cytotoxins alpha-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. Endo Y; Chan YL; Lin A; Tsurugi K; Wool IG J Biol Chem; 1988 Jun; 263(17):7917-20. PubMed ID: 3372511 [TBL] [Abstract][Full Text] [Related]
7. RNA-protein interaction. An analysis with RNA oligonucleotides of the recognition by alpha-sarcin of a ribosomal domain critical for function. Endo Y; Glück A; Chan YL; Tsurugi K; Wool IG J Biol Chem; 1990 Feb; 265(4):2216-22. PubMed ID: 2298746 [TBL] [Abstract][Full Text] [Related]
8. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Endo Y; Glück A; Wool IG J Mol Biol; 1991 Sep; 221(1):193-207. PubMed ID: 1920404 [TBL] [Abstract][Full Text] [Related]
9. Ribosomal RNA identity elements for recognition by ricin and by alpha-sarcin: mutation in the putative CG pair that closes a GAGA tetraloop. Endo Y; Gluck A; Wool IG Nucleic Acids Symp Ser; 1993; (29):165-6. PubMed ID: 8247752 [TBL] [Abstract][Full Text] [Related]
10. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. Glück A; Endo Y; Wool IG J Mol Biol; 1992 Jul; 226(2):411-24. PubMed ID: 1379305 [TBL] [Abstract][Full Text] [Related]
12. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site. Glück A; Wool IG J Mol Biol; 1996 Mar; 256(5):838-48. PubMed ID: 8601835 [TBL] [Abstract][Full Text] [Related]
13. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. Taylor DJ; Nilsson J; Merrill AR; Andersen GR; Nissen P; Frank J EMBO J; 2007 May; 26(9):2421-31. PubMed ID: 17446867 [TBL] [Abstract][Full Text] [Related]
14. Nonspecific deadenylation on sarcin/ricin domain RNA catalyzed by gelonin under acidic conditions. He WJ; Tang S; Liu WY; Stirpe F Arch Biochem Biophys; 2002 Mar; 399(2):181-7. PubMed ID: 11888204 [TBL] [Abstract][Full Text] [Related]
15. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Munishkin A; Wool IG Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12280-4. PubMed ID: 9356440 [TBL] [Abstract][Full Text] [Related]
16. The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor-G. Chan YL; Correll CC; Wool IG J Mol Biol; 2004 Mar; 337(2):263-72. PubMed ID: 15003445 [TBL] [Abstract][Full Text] [Related]
17. A functional site of the GTPase-associated center within 28S ribosomal RNA probed with an anti-RNA autoantibody. Uchiumi T; Kominami R EMBO J; 1994 Jul; 13(14):3389-94. PubMed ID: 8045265 [TBL] [Abstract][Full Text] [Related]
18. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. Yu H; Chan YL; Wool IG J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738 [TBL] [Abstract][Full Text] [Related]
19. Effect of oxidative stress on in vivo ADP-ribosylation of eukaryotic elongation factor 2. Bektaş M; Akçakaya H; Aroymak A; Nurten R; Bermek E Int J Biochem Cell Biol; 2005 Jan; 37(1):91-9. PubMed ID: 15381153 [TBL] [Abstract][Full Text] [Related]
20. Binding of mammalian ribosomal protein complex P0.P1.P2 and protein L12 to the GTPase-associated domain of 28 S ribosomal RNA and effect on the accessibility to anti-28 S RNA autoantibody. Uchiumi T; Kominami R J Biol Chem; 1997 Feb; 272(6):3302-8. PubMed ID: 9013569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]