These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11850041)

  • 1. The application of elastomeric connector for multi-channel electrophysiological recordings.
    Szabó I; Máthé K; Tóth A; Hernádi I; Czurkó A
    J Neurosci Methods; 2002 Feb; 114(1):73-9. PubMed ID: 11850041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.
    Michon F; Aarts A; Holzhammer T; Ruther P; Borghs G; McNaughton B; Kloosterman F
    J Neural Eng; 2016 Aug; 13(4):046018. PubMed ID: 27351591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of printed circuit board technology for fabrication of multi-channel micro-drives.
    Szabó I; Czurkó A; Csicsvari J; Hirase H; Leinekugel X; Buzsáki G
    J Neurosci Methods; 2001 Jan; 105(1):105-10. PubMed ID: 11166371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new transparent multi-unit recording array system fabricated by in-house laboratory technology.
    Amthor FR; Tootle JS; Yildirim A
    J Neurosci Methods; 2003 Jun; 126(2):209-19. PubMed ID: 12814845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A miniature multichannel preamplifier for recording electrophysiological activity in freely moving animals.
    Korshunov VA
    Neurosci Behav Physiol; 2009 Feb; 39(2):141-5. PubMed ID: 19139998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice.
    Jeantet Y; Cho YH
    J Neurosci Methods; 2003 Oct; 129(2):129-34. PubMed ID: 14511816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A miniature multichannel preamplifier for recording electrophysiological activity in freely moving animals].
    Korshunov VA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(1):111-6. PubMed ID: 18666574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible microelectrode for mouse EEG.
    Choi JH; Koch KP; Poppendieck W; Lee M; Doerge T; Shin HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1600-3. PubMed ID: 19964003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastomeric and soft conducting microwires for implantable neural interfaces.
    Kolarcik CL; Luebben SD; Sapp SA; Hanner J; Snyder N; Kozai TD; Chang E; Nabity JA; Nabity ST; Lagenaur CF; Cui XT
    Soft Matter; 2015 Jun; 11(24):4847-61. PubMed ID: 25993261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.
    Tateyama Y; Oyama K; Shiraishi M; Iijima T; Tsutsui KI
    Neurosci Res; 2017 Dec; 125():54-59. PubMed ID: 28733199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat.
    Westby GW; Wang H
    J Neurosci Methods; 1997 Oct; 76(2):123-33. PubMed ID: 9350963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A miniature three-channel preamplifier for unit recording in freely moving animals.
    Sia J; MacNeil DA; Sigg EB
    Physiol Behav; 1971 Jul; 7(1):121-2. PubMed ID: 5149710
    [No Abstract]   [Full Text] [Related]  

  • 15. A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments.
    Mourão FAG; Guarnieri LO; Amaral Júnior PA; Carvalho VR; Mendes EMAM; Moraes MFD
    Front Neurosci; 2021; 15():691788. PubMed ID: 35309085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature motorized microdrive and commutator system for chronic neural recording in small animals.
    Fee MS; Leonardo A
    J Neurosci Methods; 2001 Dec; 112(2):83-94. PubMed ID: 11716944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
    Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT
    J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.
    Shah KG; Lee KY; Tolosa V; Tooker A; Felix S; Benett W; Pannu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5240-3. PubMed ID: 25571175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.