These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 1185109)

  • 21. Interaction of dilauroylglycerophosphocholine with erythrocytes: pre-hemolytic events and hemolysis.
    Tanaka Y; Inoue K; Nojima S
    Biochim Biophys Acta; 1980 Jul; 600(1):126-39. PubMed ID: 7397164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The functional size of the primary complement lesion in resealed erythrocyte membrane ghosts.
    Giavedoni EB; Chow YM; Dalmasso AP
    J Immunol; 1979 Jan; 122(1):240-5. PubMed ID: 570203
    [No Abstract]   [Full Text] [Related]  

  • 23. Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes' radii detect complement-induced transmembrane channels of differing size.
    Boyle MD; Gee AP; Borsos T
    J Immunol; 1979 Jul; 123(1):77-82. PubMed ID: 109541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemolysis of sheep erythrocytes in guinea pig serum deficient in the fourth component of complement. I. Antibody and serum requirements.
    May JE; Frank MM
    J Immunol; 1973 Dec; 111(6):1671-7. PubMed ID: 4750864
    [No Abstract]   [Full Text] [Related]  

  • 25. The phenomenon of in vitro hemolysis produced by the rickettsiae of typhus fever, with a note on the mechanism of rickettsial toxicity in mice.
    CLARKE DH; FOX JP
    J Exp Med; 1948 Jul; 88(1):25-41. PubMed ID: 18871875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of the complement attack mechanism in the fluid phase and its control by C567-INH: lysis of normal erythrocytes initiated by zymosan, endotoxin, and immune complexes.
    Lint TF; Behrends CL; Baker PJ; Gewurz H
    J Immunol; 1976 Nov; 117(5 Pt 1):1440-6. PubMed ID: 1002985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resistance of sheep erythrocytes to immune lysis by treatment of the cells with a human erythrocyte extract: studies on the site of inhibition.
    Hoffmann EM; Cheng WC; Tomeu EJ; Renk CM
    J Immunol; 1974 Nov; 113(5):1501-9. PubMed ID: 4424275
    [No Abstract]   [Full Text] [Related]  

  • 28. Membrane lesions in immune lysis: surface rings, globule aggregates and transient openings.
    Iles GH; Seeman P; Naylor D; Cinader B
    J Cell Biol; 1973 Feb; 56(2):528-39. PubMed ID: 4734192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ability to activate the alternative complement pathway acquired by human and guinea-pig erythrocytes after contact with influenza virus.
    Lambré C; Thibon M
    Ann Immunol (Paris); 1980; 131C(2):213-21. PubMed ID: 7416718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune lysis of normal human and paroxysmal nocturnal hemoglobinuria (PNH) red blood cells. 3. The membrane defects caused by complement lysis.
    Rosse WF; Dourmashkin R; Humphrey JH
    J Exp Med; 1966 Jun; 123(6):969-84. PubMed ID: 5941785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of temperature on the reactivity of guinea-pig complement with gamma G and gamma M haemolytic antibodies.
    Frank MM; Gaither T
    Immunology; 1970 Dec; 19(6):967-74. PubMed ID: 5487543
    [No Abstract]   [Full Text] [Related]  

  • 32. Calcium accumulation in human and sheep erythrocytes that is induced by Escherichia coli hemolysin.
    Jorgensen SE; Mulcahy PF; Wu GK; Louis CF
    Toxicon; 1983; 21(5):717-27. PubMed ID: 6359585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trypsin-activated complex of human factor B with cobra venom factor (CVF), cleaving C3 and C5 and generating a lytic factor for unsensitized guinea pig erythrocytes. II. Physico-chemical characterization of the activated complex.
    Miyama A; Kato T; Yokoo J; Kashiba S
    Biken J; 1975 Dec; 18(4):205-14. PubMed ID: 1218075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complement: a reversible temperature-dependent alteration in the reactivity of EAC1 with C4.
    Linscott WD
    J Immunol; 1973 Jul; 111(1):200-11. PubMed ID: 4197334
    [No Abstract]   [Full Text] [Related]  

  • 35. A comparison of PCA reactive and hemolytic rabbit antibodies to sheep red blood cells.
    Warner NL; Ovary Z
    J Immunol; 1970 Jun; 104(6):1429-34. PubMed ID: 5419279
    [No Abstract]   [Full Text] [Related]  

  • 36. Comparison of complement activity in adult and preterm sheep serum.
    Ahmed S; Kemp MW; Payne MS; Kallapur SG; Stock SJ; Marsh HC; Jobe AH; Newnham JP; Spiller OB
    Am J Reprod Immunol; 2015 Mar; 73(3):232-41. PubMed ID: 25046333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auto-antibody dependent activation of the autologous classical complement pathway by guinea-pig red cells treated with influenza virus or neuraminidase: in vitro and in vivo study.
    Lambre CR; Thibon M; Le Maho S; Di Bella G
    Immunology; 1983 Jun; 49(2):311-9. PubMed ID: 6852870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prevention of complement activation on the homologous cell membrane of nucleated cells as well as erythrocytes.
    Okada H; Tanaka H; Okada N
    Eur J Immunol; 1983 Apr; 13(4):340-4. PubMed ID: 6221932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding characteristics of M and L isoantibodies to high and low potassium sheep red cells.
    Lauf PK; Sun WW
    J Membr Biol; 1976 Sep; 28(4):351-72. PubMed ID: 1033291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of mouse complement by different classes of mouse antibody.
    Klaus GG; Pepys MB; Kitajima K; Askonas BA
    Immunology; 1979 Dec; 38(4):687-95. PubMed ID: 521057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.