These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11851344)

  • 41. Site-specific dichroism analysis utilizing transmission FTIR.
    Arbely E; Kass I; Arkin IT
    Biophys J; 2003 Oct; 85(4):2476-83. PubMed ID: 14507710
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orientation of the infrared transition moments for an alpha-helix.
    Marsh D; Müller M; Schmitt FJ
    Biophys J; 2000 May; 78(5):2499-510. PubMed ID: 10777747
    [TBL] [Abstract][Full Text] [Related]  

  • 43. C-deuterated alanine: a new label to study membrane protein structure using site-specific infrared dichroism.
    Torres J; Arkin IT
    Biophys J; 2002 Feb; 82(2):1068-75. PubMed ID: 11806946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and topology of a peptide segment of the 6th transmembrane domain of the Saccharomyces cerevisae alpha-factor receptor in phospholipid bilayers.
    Valentine KG; Liu SF; Marassi FM; Veglia G; Opella SJ; Ding FX; Wang SH; Arshava B; Becker JM; Naider F
    Biopolymers; 2001 Oct; 59(4):243-56. PubMed ID: 11473349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Site-specific examination of secondary structure and orientation determination in membrane proteins: the peptidic (13)C=(18)O group as a novel infrared probe.
    Torres J; Kukol A; Goodman JM; Arkin IT
    Biopolymers; 2001 Nov; 59(6):396-401. PubMed ID: 11598874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of a single glycine residue to determine the tilt and orientation of a transmembrane helix. A new structural label for infrared spectroscopy.
    Torres J; Kukol A; Arkin IT
    Biophys J; 2000 Dec; 79(6):3139-43. PubMed ID: 11106618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The chain length dependence of helix formation of the second transmembrane domain of a G protein-coupled receptor of Saccharomyces cerevisiae.
    Ding FX; Schreiber D; VerBerkmoes NC; Becker JM; Naider F
    J Biol Chem; 2002 Apr; 277(17):14483-92. PubMed ID: 11854278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure and orientation of the transmembrane domain of glycophorin A in lipid bilayers.
    Smith SO; Jonas R; Braiman M; Bormann BJ
    Biochemistry; 1994 May; 33(20):6334-41. PubMed ID: 8193149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An atomistic model for assembly of transmembrane domain of T cell receptor complex.
    Sharma S; Juffer AH
    J Am Chem Soc; 2013 Feb; 135(6):2188-97. PubMed ID: 23320396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The transmembrane homotrimer of ADAM 1 in model lipid bilayers.
    Gan SW; Xin L; Torres J
    Protein Sci; 2007 Feb; 16(2):285-92. PubMed ID: 17189481
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rotational orientation of monomers within a designed homo-oligomer transmembrane helical bundle.
    Howard KP; Liu W; Crocker E; Nanda V; Lear J; Degrado WF; Smith SO
    Protein Sci; 2005 Apr; 14(4):1019-24. PubMed ID: 15741331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A structure for the trimeric MHC class II-associated invariant chain transmembrane domain.
    Kukol A; Torres J; Arkin IT
    J Mol Biol; 2002 Jul; 320(5):1109-17. PubMed ID: 12126629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational effect of phosphorylation on T cell receptor/CD3 zeta-chain sequences.
    Laczkó I; Hollósi M; Vass E; Hegedüs Z; Monostori E; Tóth GK
    Biochem Biophys Res Commun; 1998 Jan; 242(3):474-9. PubMed ID: 9464240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The net orientation of nicotinic receptor transmembrane alpha-helices in the resting and desensitized states.
    Hill DG; Baenziger JE
    Biophys J; 2006 Jul; 91(2):705-14. PubMed ID: 16648164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study.
    Holdbrook DA; Leung YM; Piggot TJ; Marius P; Williamson PT; Khalid S
    Biochemistry; 2010 Dec; 49(51):10796-802. PubMed ID: 21105749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain.
    Gan SW; Ng L; Lin X; Gong X; Torres J
    Protein Sci; 2008 May; 17(5):813-20. PubMed ID: 18369195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of the influenza C virus CM2 protein transmembrane domain obtained by site-specific infrared dichroism and global molecular dynamics searching.
    Kukol A; Arkin IT
    J Biol Chem; 2000 Feb; 275(6):4225-9. PubMed ID: 10660588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The structure of the CD3ζζ transmembrane dimer in lipid bilayers.
    Sharma S; Lensink MF; Juffer AH
    Biochim Biophys Acta; 2014 Mar; 1838(3):739-46. PubMed ID: 24333300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling sample disorder in site-specific dichroism studies of uniaxial systems.
    Kass I; Arbely E; Arkin IT
    Biophys J; 2004 Apr; 86(4):2502-7. PubMed ID: 15041686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topology of the Salmonella invasion protein SipB in a model bilayer.
    McGhie EJ; Hume PJ; Hayward RD; Torres J; Koronakis V
    Mol Microbiol; 2002 Jun; 44(5):1309-21. PubMed ID: 12068811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.