These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11851393)

  • 1. Mapping proximity within proteins using fluorescence spectroscopy. A study of T4 lysozyme showing that tryptophan residues quench bimane fluorescence.
    Mansoor SE; McHaourab HS; Farrens DL
    Biochemistry; 2002 Feb; 41(8):2475-84. PubMed ID: 11851393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance mapping in proteins using fluorescence spectroscopy: the tryptophan-induced quenching (TrIQ) method.
    Mansoor SE; Dewitt MA; Farrens DL
    Biochemistry; 2010 Nov; 49(45):9722-31. PubMed ID: 20886836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner.
    Jones Brunette AM; Farrens DL
    Biochemistry; 2014 Oct; 53(40):6290-301. PubMed ID: 25144569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation, and spectroscopic properties.
    Pjura P; McIntosh LP; Wozniak JA; Matthews BW
    Proteins; 1993 Apr; 15(4):401-12. PubMed ID: 8460110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput protein structural analysis using site-directed fluorescence labeling and the bimane derivative (2-pyridyl)dithiobimane.
    Mansoor SE; Farrens DL
    Biochemistry; 2004 Jul; 43(29):9426-38. PubMed ID: 15260485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of chaperone function in small heat-shock proteins. Fluorescence studies of the conformations of T4 lysozyme bound to alphaB-crystallin.
    Sathish HA; Stein RA; Yang G; Mchaourab HS
    J Biol Chem; 2003 Nov; 278(45):44214-21. PubMed ID: 12928430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional fluorescence correlation spectroscopy IV: resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme.
    Fukuma H; Nakashima K; Ozaki Y; Noda I
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):517-22. PubMed ID: 16520086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane.
    Mansoor SE; McHaourab HS; Farrens DL
    Biochemistry; 1999 Dec; 38(49):16383-93. PubMed ID: 10587464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme.
    Llinás M; Marqusee S
    Protein Sci; 1998 Jan; 7(1):96-104. PubMed ID: 9514264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution and characterization of tryptophyl fluorescence of hen egg-white lysozyme by quenching- and time-resolved spectroscopy.
    Nishimoto E; Yamashita S; Yamasaki N; Imoto T
    Biosci Biotechnol Biochem; 1999 Feb; 63(2):329-36. PubMed ID: 10192915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation.
    Ando N; Barstow B; Baase WA; Fields A; Matthews BW; Gruner SM
    Biochemistry; 2008 Oct; 47(42):11097-109. PubMed ID: 18816066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of tryptophan in bacteriophage T4 lysozymes.
    Harris DL; Hudson BS
    Biochemistry; 1990 Jun; 29(22):5276-85. PubMed ID: 2383546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes.
    Crouse HF; Potoma J; Nejrabi F; Snyder DL; Chohan BS; Basu S
    Dalton Trans; 2012 Mar; 41(9):2720-31. PubMed ID: 22249654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the Intricacy of the Crowded Environment through Tryptophan Quenching in Lysozyme.
    Singh P; Chowdhury PK
    J Phys Chem B; 2017 May; 121(18):4687-4699. PubMed ID: 28388056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics.
    Mchaourab HS; Lietzow MA; Hideg K; Hubbell WL
    Biochemistry; 1996 Jun; 35(24):7692-704. PubMed ID: 8672470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative triplet-state properties of the three tryptophan residues in bacteriophage T4 lysozyme and in the enzyme complex with methylmercury(II).
    Zang LH; Ghosh S; Maki AH
    Biochemistry; 1988 Oct; 27(20):7820-5. PubMed ID: 3207714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipole-dipole interactions between tryptophan side chains and hydration water molecules dominate the observed dynamic stokes shift of lysozyme.
    Fukuda A; Oroguchi T; Nakasako M
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129406. PubMed ID: 31377191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanidinium derivatives bind preferentially and trigger long-distance conformational changes in an engineered T4 lysozyme.
    Yousef MS; Bischoff N; Dyer CM; Baase WA; Matthews BW
    Protein Sci; 2006 Apr; 15(4):853-61. PubMed ID: 16600969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.