BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11851395)

  • 1. Flavin recognition by an RNA aptamer targeted toward FAD.
    Roychowdhury-Saha M; Lato SM; Shank ED; Burke DH
    Biochemistry; 2002 Feb; 41(8):2492-9. PubMed ID: 11851395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary landscapes for the acquisition of new ligand recognition by RNA aptamers.
    Held DM; Greathouse ST; Agrawal A; Burke DH
    J Mol Evol; 2003 Sep; 57(3):299-308. PubMed ID: 14629040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Mg²⁺ ions in flavin recognition by RNA aptamer.
    Sengupta A; Gavvala K; Koninti RK; Hazra P
    J Photochem Photobiol B; 2014 Nov; 140():240-8. PubMed ID: 25173759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S; Curti B; Vanoni MA
    Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond.
    Hamdane D; Bou-Nader C; Cornu D; Hui-Bon-Hoa G; Fontecave M
    Biochemistry; 2015 Jul; 54(28):4354-64. PubMed ID: 26120776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro selection of ssDNA aptamers that can specifically recognize and differentiate riboflavin and its derivative FAD.
    Wang J; Wang Q; Luo Y; Gao T; Zhao Y; Pei R
    Talanta; 2019 Nov; 204():424-430. PubMed ID: 31357315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis.
    Pallotta ML
    Yeast; 2011 Oct; 28(10):693-705. PubMed ID: 21915900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochromatographic retention studies on a flavin-binding RNA aptamer sorbent.
    Clark SL; Remcho VT
    Anal Chem; 2003 Nov; 75(21):5692-6. PubMed ID: 14588007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors.
    Emahi I; Gruenke PR; Baum DA
    J Mol Evol; 2015 Dec; 81(5-6):186-93. PubMed ID: 26498628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence perspective on the differential interaction of riboflavin and flavin adenine dinucleotide with cucurbit[7]uril.
    Dutta Choudhury S; Mohanty J; Bhasikuttan AC; Pal H
    J Phys Chem B; 2010 Aug; 114(33):10717-27. PubMed ID: 20684509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM; Souffrant MG; Hamelberg D; Gadda G; Bommarius AS
    Biochemistry; 2017 Jul; 56(29):3800-3807. PubMed ID: 28640638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The recognition of glycolate oxidase apoprotein with flavin analogs in higher plants.
    Wang WJ; Huang JQ; Yang C; Huang JJ; Li MQ
    Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):290-6. PubMed ID: 15253155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YeeO from Escherichia coli exports flavins.
    McAnulty MJ; Wood TK
    Bioengineered; 2014; 5(6):386-92. PubMed ID: 25482085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal gel chromatographic analysis of the interaction of a protein with self-associating ligands: aberrant saturation in the binding of flavins to bovine serum albumin.
    Sawada O; Ishida T; Horiike K
    J Biochem; 2001 Jun; 129(6):899-907. PubMed ID: 11388904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA aptamers that bind flavin and nicotinamide redox cofactors.
    Lauhon CT; Szostak JW
    J Am Chem Soc; 1995 Feb; 117(4):1246-57. PubMed ID: 11539282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.